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Omnipose is a general image segmentation tool that builds on Cellpose in a number of ways described in our paper. It
works for both 2D and 3D images and on any imaging modality or cell shape, so long as you train it on representative
images. We have several pre-trained models for:

• bacterial phase contrast: trained on a diverse range of bacterial species and morphologies.

• bacterial fluorescence: trained on the subset of the phase data that had a membrane or cytosol tag.

• C. elegans: trained on a couple OpenWorm videos and the BBBC010 alive/dead assay. We are working on
expanding this significantly with the help of other labs contributing ground-truth data.

• cyto2: trained on user data submitted through the Cellpose GUI. Very diverse data, but not necessarily the best
quality. This model can be a good starting point for users making their own ground-truth datasets.

Here we provide both the documentation for Omnipose and our fork of Cellpose. Please note this documentation is
actively in development. For support, submit an issue on the Omnipose repo. For more on the workings of cellpose,
check out our twitter thread and read the paper.

1. Install an Anaconda distribution of Python. Note you might need to use an anaconda prompt if you did not add
anaconda to the path. Alternatives like miniconda also work just as well.

2. Open an anaconda prompt / command prompt with conda for python 3 in the path.

3. To create a new environment for CPU only, run

conda create -n omnipose 'python==3.10.12' pytorch

For users with NVIDIA GPUs, add these additional arguments:

torchvision pytorch-cuda=11.8 -c pytorch -c nvidia

BASICS 1

https://github.com/MouseLand/cellpose
https://www.nature.com/articles/s41592-022-01639-4
https://bbbc.broadinstitute.org/BBBC010
https://github.com/kevinjohncutler/omnipose/issues
https://twitter.com/KevinJohnCutler/status/1459714695686864900
https://www.nature.com/articles/s41592-022-01639-4
https://www.anaconda.com/download/
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See GPU support for more details. Python 3.10 is not a strict requirement; see Python compatibility for more
about choosing your python version.

4. To activate this new environment, run

conda activate omnipose

5. To install the latest PyPi release of Omnipose, run

pip install omnipose

or, for the most up-to-date development version,

git clone https://github.com/kevinjohncutler/omnipose.git
cd omnipose
pip install -e .

Warning: If you previously installed Omnipose, please run

pip uninstall cellpose_omni && pip cache remove cellpose_omni

to prevent version conflicts. See project structure for more details.

2 BASICS



CHAPTER

ONE

PYTHON COMPATIBILITY

We have tested Omnipose extensively on Python version 3.8.5 and have encountered issues on some lower versions.
Versions up to 3.10.11 have been confirmed compatible, but we have encountered bugs with the GUI dependencies
on 3.11+. For those users with system or global pyenv python3 installations, check your python version by running
python -V before making your conda environment and choose a different version. That way, there is no crosstalk
between pip-installed packages inside and outside your environment. So if you have 3.x.y installed via pyenv etc.,
install your environment with 3.x.z instead.

3
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4 Chapter 1. Python compatibility



CHAPTER

TWO

PYENV VERSUS CONDA

Pyenv also works great for creating an environment for installing Omnipose (and it also works a lot better for installing
Napari alongside it, in my experience). Simply set your global version anywhere from 3.8.5-3.10.11 and run pip
install omnipose. I've had no problems with GPU compatibility with this method on Linux, as pip collects all the
required packages. Conda is much more reproducible, but often finicky. You can use pyenv on Windows and macOS
too, but you will need a conda environment for Apple Silicon GPU support (PyPi still lacks many package versions
built for Apple Silicon).

5
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6 Chapter 2. Pyenv versus Conda
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THREE

GPU SUPPORT

Omnipose runs on CPU on macOS, Windows, and Linux. PyTorch has historically only supported NVIDIA GPUs,
but has more more recently begun supporting Apple Silicon GPUs. It looks AMD support may be avaiable these days
(ROCm), but I have not tested that out. Windows and Linux installs are straightforward:

Your PyTorch version (>=1.6) needs to be compatible with your NVIDIA driver. Older cards may not be supported
by the latest drivers and thus not supported by the latest PyTorch version. See the official documentation on installing
both the most recent and previous combinations of CUDA and PyTorch to suit your needs. Accordingly, you can get
started with CUDA 11.8 by making the following environment:

conda create -n omnipose 'python==3.10.12' pytorch torchvision pytorch-cuda=11.8 \
-c pytorch -c nvidia

Note that the official PyTorch command includes torchaudio, but that is not needed for Omnipose. (torchvision appears
to be necessary these days). If you are on older drivers, you can get started with an older version of CUDA, e.g. 10.2:

conda create -n omnipose pytorch=1.8.2 cudatoolkit=10.2 -c pytorch-lts

For Apple Silicon, download omnipose_mac_environment.yml and install the environment:

conda env create -f <path_to_environment_file>
conda activate omnipose

You may edit this yml to change the name or python version etc. For more notes on Apple Silicon development, see this
thread. On all systems, remember that you may need to use ipykernel to use the omnipose environment in a notebook.

7

https://pytorch.org/get-started/locally/
https://pytorch.org/get-started/previous-versions/
omnipose_mac_environment.yml
https://github.com/kevinjohncutler/omnipose/issues/14
https://github.com/kevinjohncutler/omnipose/issues/14
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8 Chapter 3. GPU support



CHAPTER

FOUR

WHERE ARE MODELS STORED?

To maintain compatibility with Cellpose, the pretrained Omnipose models are also downloaded to $HOME/.cellpose/
models/. This path on linux is /home/USERNAME/.cellpose/, on macOS /Users/USERNAME/.cellpose/, and
on Windows C:\Users\USERNAME\.cellpose\models\. These models are downloaded the first time you try to use
them, either on the command line, in the GUI, or in a notebook.

If you would like to download the models to a different directory and are using the command line or the GUI, you will
need to always set the environment variable CELLPOSE_LOCAL_MODELS_PATH before you run python -m omnipose
... (thanks Chris Roat for implementing this!).

To set the environment variable in the command line/Anaconda prompt on windows run the following command mod-
ified for your path: set CELLPOSE_LOCAL_MODELS_PATH=C:/PATH_FOR_MODELS/. To set the environment variable
in the command line on linux, run export CELLPOSE_LOCAL_MODELS_PATH=/PATH_FOR_MODELS/.

To set this environment variable when running Omnipose in a jupyter notebook, run this code at the beginning of your
notebook before you import Omnipose:

import os
os.environ["CELLPOSE_LOCAL_MODELS_PATH"] = "/PATH_FOR_MODELS/"

9



omnipose, Release 1.0.6-26-g260e4d3

10 Chapter 4. Where are models stored?



CHAPTER

FIVE

COMMON ISSUES

If you receive the error: Illegal instruction (core dumped), then likely mxnet does not recognize your MKL
version. Please uninstall and reinstall mxnet without mkl:

pip uninstall mxnet-mkl
pip uninstall mxnet
pip install mxnet==1.4.0

If you receive the error: No module named PyQt5.sip, then try uninstalling and reinstalling pyqt5

pip uninstall pyqt5 pyqt5-tools
pip install pyqt5 pyqt5-tools pyqt5.sip

If you have errors related to OpenMP and libiomp5, then try

conda install nomkl

If you receive an error associated with matplotlib, try upgrading it:

pip install matplotlib --upgrade

If you receive the error: ImportError: _arpack DLL load failed, then try uninstalling and reinstalling scipy

pip uninstall scipy
pip install scipy

If you are having issues with the graphical interface, make sure you have python 3.8.5 installed. Higher versions should
also work.

If you are on macOS Yosemite or earlier, PyQt does not work and you won't be able to use the GUI. More recent
versions of macOS are fine. The software has been heavily tested on Windows 10 and Ubuntu 18.04, and less well
tested on macOS. Please post an issue if you have installation problems.

11
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12 Chapter 5. Common issues



CHAPTER

SIX

GUI

The Omnipose GUI is an expansion and refinement of that from Cellpose. It defaults to the bact_phase_omni model
and corresponding model parameters. Additionally, we pre-load a small bacterial phase contrast image for demonstra-
tion purposes. Masks are also represented in N-color format by default, which is handy for visualizing and editing. Be
sure to untick the ncolor box to switch to standard label format before saving your masks if that format is what you
need (what you see is what you get).

Note: The GUI only segments one image at a time, so it is really only intended for users to try out Omnipose and find
the best model and optimal segmentation parameters with minimal setup. If you want to segment multiple images in a
directory or train a model, use Omnipose in the command line or a jupyter notebook. The GUI prints out the current
parameters for you in the bottom left.

6.1 Starting the GUI

The quickest way to start is to open the GUI from a command line terminal. You might need to open an anaconda
prompt if you did not add anaconda to the path. Activate your omnipose conda environment and run omnipose (or
python -m omnipose).

The first time Omnipose runs, it will ask you to download the GUI dependencies. When it finishes, run the launch
command again. The terminal will remain open and you can see model download progress, error messages, etc. as you
interact with the GUI.

You can drag and drop images (.tif, .png, .jpg, .gif) into the GUI and run Cellpose, and/or manually segment them.
Omnipose waits to download a model until the first time you use it. When the GUI is processing, you will see the
progress bar fill up and during this time you cannot click on anything in the GUI. For more information about what the
GUI is doing you can look at the terminal/prompt with which you launched the GUI. For best accuracy and runtime
performance, resize images so cells are less than 100 pixels across.

For multi-channel, multi-Z tiffs, the expected format is ZCYX.

13
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6.2 Using the GUI

Main GUI mouse controls (works in all views):

• Pan = left-click + drag

• Zoom = scroll wheel (or +/= and - buttons)

• Full view = double left-click

• Select mask = left-click on mask

• Delete mask = Ctrl (or Command on Mac) + left-click

• Merge masks = Alt + left-click (will merge last two)

• Start draw mask = right-click

• End draw mask = right-click, or return to circle at beginning

Overlaps in masks are NOT allowed. If you draw a mask on top of another mask, it is cropped so that it doesn't overlap
with the old mask. Masks in 2D should be single strokes (if single_stroke is checked).

If you want to draw masks in 3D, then you can turn single_stroke option off and draw a stroke on each plane with the
cell and then press ENTER. 3D labeling will fill in unlabelled z-planes so that you do not have to as densely label.

Note: The GUI automatically saves after you draw a mask but NOT after segmentation and NOT after 3D mask
drawing (too slow). Save in the file menu or with Ctrl+S. The output file is in the same folder as the loaded image with
_seg.npy appended.

Keyboard shortcuts Description
CTRL+H help
=/+ // - zoom in // zoom out
CTRL+Z undo previously drawn mask/stroke
CTRL+0 clear all masks
CTRL+L load image (can alternatively drag and drop image)
CTRL+S SAVE MASKS IN IMAGE to _seg.npy file
CTRL+P load _seg.npy file (note: it will load automatically with image if it exists)
CTRL+M load masks file (must be same size as image with 0 for NO mask, and 1,2,3... for

masks)
CTRL+N load numpy stack (NOT WORKING ATM)
A/D or LEFT/RIGHT cycle through images in current directory
W/S or UP/DOWN change color (RGB/gray/red/green/blue)
PAGE-UP / PAGE-
DOWN

change to flows and cell prob views (if segmentation computed)

, / . increase / decrease brush size for drawing masks
X turn masks ON or OFF
Z toggle outlines ON or OFF
C cycle through labels for image type (saved to _seg.npy)

14 Chapter 6. GUI



omnipose, Release 1.0.6-26-g260e4d3

6.3 Segmentation options

SIZE: you can manually enter the approximate diameter for your cells, or press "calibrate" to let the SizeModel()
estimate it. The size can be visualized by a disk at the bottom of the view window (can turn this disk on by checking
"scale disk on"). Size defaults to 0 for bacterial models, which disables image resizing.

use GPU: this will be grayed out for conda envoronemts / machines not configured for running pytorch on GPU.

MODEL: choose among several pretrained models

CHAN TO SEG: this is the channel in which the cytoplasm or nuclei exist

CHAN2 (OPT): if cyto* model is chosen, then choose the nuclear channel for this option

6.3. Segmentation options 15
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CHAPTER

SEVEN

INPUTS

Omnipose automatically detects TIFs, PNGs, or JPEGs. Under the hood, cellpose_omni.io uses tifffile for
loading TIFs and cv2 for PNG and JPEG. We are considering adding direct support for other bioformats types such as
ND2, but for now all input must be exported to the above image formats prior to running Omnipose.

7.1 Channel formatting

Single-plane, multichannel images can be formatted as (nY,nX,nChan) or (nChan,nY,nX), the latter CYX formatting
being more conventional and easier to work with (e.g., in Napari). The channels settings will take care of reshaping
the input appropriately for the network if we can safely assume that the smallest axis is the channel axis. For example,
a (2,2048,2048) image will automatically have axis 0 set to be the channel axis. The channel_axis parameter allows
you to override this when necessary.

Note that Omnipose also rescales the input for each channel so that 0 = 0.01st percentile of image values and 1 = 99.99th
percentile. These are not yet user-tunable parameters, but they will be in a future release.

7.2 3D segmentation

Multiple-plane and multiple-channel TIFs are supported in the GUI (can drag-and-drop) and are supported when run-
ning in a notebook. Multiplane images should be of shape ZCYX or ZYX. You can test this by running in python:

import skimage.io
data = skimage.io.imread('img.tif')
print(data.shape)

If drag-and-drop of the TIF into the GUI does not work correctly, then it's likely that the shape of the TIF is incorrect.
If drag-and-drop works (you can see a TIF with multiple planes), then the GUI will automatically run 3D segmentation
and display it in the GUI. Watch the command line for progress. It is recommended to use a GPU to speed up processing.

If drag-and-drop doesn't work because of the shape of your TIF, you need to transpose the TIF and re-save to use
the GUI, or use the Napari plugin for Cellpose, or run CLI/notebook and specify the channel_axis and/or z_axis
parameters:

channel_axis and z_axis can be used to specify the axis (0-based) of the image which corresponds to the
image channels and to the z axis. For example. a 105-plane z-stack image with 2 channels of shape (1024,
1024,2,105,1) can be specified with channel_axis=2 and z_axis=3. If channel_axis=None, cell-
pose will try to automatically determine the channel axis by choosing the dimension with the minimal
size after squeezing. If z_axis=None cellpose will automatically select the first non-channel axis of the
image to be the Z axis (ZYX ordering). These parameters can be specified using the command line with
--channel_axis or --z_axis or as inputs to model.eval for the Cellpose or CellposeModelmodel.

17
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There are two distinct modes of 3D image processing. The first is Cellpose3D, which uses a 2D model on orthogonal
slices of the volume to estimate 3D predicitons from 2D network output. To use this in a notebook, set do_3D=True.
You can give a list of 3D inputs, or a single 3D/4D stack. When running on the command line, add the flag --do_3D
(it will run all TIFs in the folder as 3D TIFs if possible).

If Cellpose3D segmentation is not working well and there is inhomogeneity in Z, try stitching masks in Z instead of
running do_3D=True. See details for this option here: stitch_threshold.

The second approach, implemented in Omnipose, is to directly predict 3D flows etc. by training models on 3D datasets.
We offer one pretrained model: plant_omni. The --dim argument allows users to specify the dimensionality of
their data/model for training and evaluation, so dim=2 corresponds to 2D processing (even in Cellpose3D) and dim=3
corresponds to 3D processing. More work is needed to validate functionality of true 3D segmentation in the GUI.

18 Chapter 7. Inputs
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CHAPTER

EIGHT

SETTINGS

The most important settings are described on this page. See cellpose_omni.models() for all options.

This is a typical example of using an Omnipose model to segment a list of images in a notebook. Cellpose users need
only select an Omnipose model and use omni=True to update their existing code.

from cellpose_omni import models
import skimage.io
model = models.Cellpose(gpu=False,

model_type='bact_phase_omni',
nclasses=4,
nchan=2,
dim=2)

files = ['img0.tif', 'img1.tif']
imgs = [skimage.io.imread(f) for f in files]
masks, flows, styles, diams = model.eval(imgs,

diameter=None,
channels=[0,0],
threshold=0.4,
omni=True)

This example shows the same settings used for each image, but you can also pass in a list for channels and diameter
that specifies unique values to apply to each image. See our example notebooks for a solid introduction and figure
notebooks for more advanced examples.

Tip: Use pretrained_model=<path to model> in place of model_type=<model name> when you want to use
a model that is not built-in. Specify nclasses and nchan if you encounter any issues in the model initialization (see
Pretrained models).

8.1 Channels

Use channels = [0,0] for mono-channel images or multi-channel images that you would like converted to grayscale
prior to segmentation. [0,0] is what we used to train and evaluate our bact_phase_omni, bact_fluor_omni,
worm_omni, worm_high_res_omni, and plant_omni models. If you do want to run segmentation on a specific chan-
nel of multi-channel images, use 1-based-indexing [i,0] with i = 1,2,3,... for red, green, blue, ..., respectively.
For example, you might have blue nuclei that look a lot like fluorescent bacteria, so could use the bact_fluor_omni
model with channels = [2,0].
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You can also use two channels for segmentation: a cytoplasm channel and a nuclear channel. The cyto2_omni model
was trained with image channels re-ordered to have red cytoplasm and green nucleus (where applicable in the dataset)
using --chan 1 --chan2 2 and therefore was evaluated using channels = [1,2].

See mono_channel_bact.ipynb for a monochannel segmentation on bacterial phase contrast images and
multi_channel_cyto.ipynb for multichannel segmentation of mouse neuron cells.

8.2 Flow threshold

The neural network may predict hallucinate network outputs that do not correspond well to the masks found by the mask
reconstruction dynamics. As a consistency check, we can compute the 'true' flow field from the predicted labels and
compare this to the network predictions pixel-by-pixel. The flow_threshold parameter is the maximum allowed error
of the flows averaged over all pixels in a given mask. The default is flow_threshold=0.4. Increase this threshold if
Omnipose is not returning as many masks as you expect. Decrease this threshold if Omnipose is returning too many
spurious masks.

Note: Well-trained models really don't need this and we set flow_threshold=0.0 for most of our model evaluation.
This disables the flow error calculation and will make Omnipose run a lot faster on large datasets.

8.3 Mask threshold

This threshold is applied to the distance transform output of Omnipose (or the cellprob output of Cellpose) to seed cell
masks pixels for running dynamics. The default is mask_threshold=0.0. Decrease this threshold if you are getting
too few masks or if masks do not cover the entire cell.

Tip: The GUI provides sliders that update the Omnipose output for flow_threshold and mask_threshold in real
time, which is very fast even on CPU for small images (~500 x 500 px).

8.4 Diameter

In most Omnipose models, we set diameter=0 to disable image rescaling. We found that rescaling to a common cell
diameter is only necessary when the images for training and evaluation have extreme diffrences in cell size, such as
in the cyto2 dataset. Therefore, cyto2_omni was trained with a mean diameter of 30px just like the Cellpose cyto
model. This means that images are rescaled by a factor of 30.0/D where D is the mean diameter of all cells in the
image. See the page on mean cell diameter to see how Omnipose handles this better than Cellpose.

The worm_high_res_omni is another example where rescaling was necessary. We suspect that it is the network
architecture kernel size and number of down-sampling stages that prevents accurate prediction of boundary-derived
output like flow and distance at the centers of objects. For these high-resolution C. elegans images, we found 60px to
work well, but we did not do more tests to push this higher. To use this model, images should be rescaled by a factor
of 60.0/D.

Tip: At this time, the diameter used for training is not saved with the model parameters and therefore must be specified
using mymodel.diameter=60.0 after initializing mymodel=models.CellposeModel(). 30 is the default for models
with cyto in the name but can be overwritten as shown. Similarly, nuclei-named models default to a mean diameter of
17 and bacteria-named models default to a mean diameter of 0 (rescaling disabled).
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8.5 SizeModel()

In contrast to the CellposeModel() class that takes diameter as an option for rescaling, the Cellpose class includes
a SizeModel() for automatic diameter estimation. This is a linear regression model trained on the 'style' vector of
the network, which you can think of as a 64-dimensional summary of the input image. A SizeModel() for Omnipose
was trained on the cyto2 dataset to predict our own cell diameter from the style vector. To use the SizeModel(), we
follow a two-step process:

1. Run the image through the cellpose network and obtain the style vector. Predict the size using the linear regression
model from the style vector.

2. Resize the image based on the predicted size and run cellpose again, and produce masks. Take the final estimated
size as the median diameter of the predicted masks.

For automated estimation in the Cellpose() class set diameter = None (default). However, if this estimate is
incorrect, you will need to set the diameter manually.

Changing the diameter will change the results that the algorithm outputs. When the diameter is set smaller than the true
size then Omnipose may over-segment cells. Similarly, if the diameter is set too big then Omnipose may under-segment
cells.

8.6 Resample

The cellpose network is run on your rescaled image -- where the rescaling factor is determined by the diameter you
input (or determined automatically as above). For instance, if you have an image with 60 pixel diameter cells, the
rescaling factor is 30./60. = 0.5. After network predictions are made, the model runs the dynamics. The dynamics can
be run at the rescaled size (resample=False), or the dynamics can be run on the resampled, interpolated flows at the
true image size (resample=True). resample=True will create smoother masks when the cells are large but will be
slower. resample=False can produce some jagged mask edges due to nearest-neighbor interpolation. The default our
Cellpose fork is resample==True.

8.7 3D settings

Volumetric stacks do not always have the same sampling in XY as they do in Z. Therefore you can set an anisotropy
parameter to allow for differences in sampling, e.g. set to 2.0 if Z is sampled half as dense as X or Y.

There may be additional differences in YZ and XZ slices that make them unable to be used for 3D segmentation. I'd
recommend viewing the volume in those dimensions if the segmentation is failing. In those instances, you may want
to turn off 3D segmentation (do_3D=False) and run instead with stitch_threshold>0. Cellpose will create masks
in 2D on each XY slice and then stitch them across slices if the IoU between the mask on the current slice and the next
slice is greater than or equal to the stitch_threshold.

3D segmentation ignores the flow_threshold because we did not find that it helped to filter out false positives in our
test 3D cell volume. Instead, we found that setting min_size is a good way to remove false positives.

8.5. SizeModel() 21
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CHAPTER

NINE

OUTPUTS

Omnipose uses a generalized version of the Cellpose U-net to predict several output "images" based on an input image.
You can use a Cellpose model with Omnipose (omni=True), which just turns on the Omnipose mask reconstruction
algorithm to fix the over-segmentation errors that may result form your Cellpose network outputs.

Cellpose models predict 2 outputs: flows and cell probability (cellprob). The predictions the network makes of cellprob
are the inputs to a sigmoid centered at zero (𝜎(𝑥) = 1

1+𝑒−𝑥 ), so they vary from around −6 to +6. The flow field is a
vector field and is therefore comprised of 𝑁 distinct outputs in 𝑁 dimensions.

The original Omnipose models predict 3 outputs: distance field, flow field, and boundary. The distance field is modified
during training to have a background of −5 instead of 0. This helps balance the asymmetry in output range, as the flow
components range from−5 to−5 and the boundary field ranges from roughly−6 to+6. (same sigmoid input described
above).

New Omnipose models no longer require the boundary field to achieve the same accuracy, and thus by default train
with just distance and flow (nclasses=2).

Warning: If you trained a custom model with Omnipose <= version 0.4.0, your defaults were nclasses=3 and
nchan=2. Use these settings when initializing you model. Moving forward, Omnipose will use nclasses=2 and
nchan=1 by default. See Pretrained models for a table of models and the number of outputs.

9.1 _seg.npy output

*_seg.npy files have the following fields:

• filename : filename of image

• img : image with chosen channels (CYX) (if not multiplane)

• masks : masks (0 = NO masks; 1,2,... = mask labels)

• colors : colors for masks

• outlines : outlines of masks (0 = NO outline; 1,2,... = outline labels)

• chan_choose : channels that you chose in GUI (0=gray/none, 1=red, 2=green, 3=blue)

• ismanual : element k = whether or not mask k was manually drawn or computed by Omnipose/Cellpose

• flows
[flows[0] is XY flow in RGB, flows[1] is the cell probability in range 0-255 instead of 0.0 to 1.0, flows[2] is
Z flow in range 0-255 (if it exists, otherwise zeros),] flows[3] is [dY, dX, cellprob] (or [dZ, dY, dX, cellprob]
for 3D), flows[4] is pixel destinations (for internal use)

• est_diam : estimated diameter (if run on command line)
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• zdraw : for each mask, which planes were manually labelled (planes in between manually drawn have interpolated
masks)

Here is an example of loading in a *_seg.npy file and plotting masks and outlines

import numpy as np
from cellpose_omni import plot
dat = np.load('_seg.npy', allow_pickle=True).item()

# plot image with masks overlaid
mask_RGB = plot.mask_overlay(dat['img'], dat['masks'],

colors=np.array(dat['colors']))

# plot image with outlines overlaid in red
outlines = plot.outlines_list(dat['masks'])
plt.imshow(dat['img'])
for o in outlines:

plt.plot(o[:,0], o[:,1], color='r')

If you run in a notebook and want to save to a *_seg.npy file, run

from cellpose_omni import io
io.masks_flows_to_seg(images, masks, flows, diams, file_name, channels)

where each of these inputs is a list (as is the output of model.eval)

9.2 PNG output

You can save masks to PNG in the GUI. Be aware that the GUI will save the masks in the format being displayed, which
defaults to the N-color representation for easier visualization and editing (4 or 5 repeating colors). Toggle off ncolor
before saving masks to put them in standard 1,...,N format.

To save masks (and other plots in PNG) using the command line, add the flag --save_png. If you want the N-color
versions saved, use --save_ncolor.

In a notebook, use:

from cellpose_omni import io
io.save_to_png(images, masks, flows, image_names)

9.3 ROI manager compatible output for ImageJ

You can save the outlines of masks in a text file that is compatible with ImageJ ROI Manager from the GUI File menu.

To save using the command line, add the flag --save_txt.

Use the function below if running in a notebook:

from cellpose_omni import io, plot

# image_name is file name of image
# masks is numpy array of masks for image
base = os.path.splitext(image_name)[0]

(continues on next page)
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(continued from previous page)

outlines = utils.outlines_list(masks)
io.outlines_to_text(base, outlines)

To load this _cp_outlines.txt file into ImageJ, use the python script provided in Cellpose:
imagej_roi_converter.py. Run this as a macro after opening your image file. It will ask you to input the
path to the _cp_outlines.txt file. Input that and the ROIs will appear in the ROI manager.

9.4 Plotting functions

In plot.py there are functions, like show_segmentation:

from cellpose_omni import plot

nimg = len(imgs)
for idx in range(nimg):

maski = masks[idx]
flowi = flows[idx][0]

fig = plt.figure(figsize=(12,5))
plot.show_segmentation(fig, imgs[idx], maski, flowi, channels=channels[idx])
plt.tight_layout()
plt.show()

9.4. Plotting functions 25
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CHAPTER

TEN

TRAINING

Begin a training round in a terminal using the following command template:

omnipose --train --use_gpu --dir <training image directory> \
--img_filter <img_filter> --mask_filter <mask_filter> \
--nchan <nchan> --all_channels --channel_axis <channel_axis> \
--pretrained_model None --diameter 0 --nclasses 2 \
--learning_rate 0.1 --RAdam --batch_size 16 --n_epochs <n_epochs>

Note: Training should be done only via CLI. If image preprocessing is required, I highly suggest doing that in a script
and saving to a new folder (as opposed to attempting preprocessing + training in one script/notebook).

The main commands here are:

omnipose
calls __main__.py in cellpose-omni, which first loads the images in --dir and formats them. Then --train
toggles on the training branch (versus evaluation).

--dir
points to a folder of image and label pairs. With --look_one_level_down, you can let --dir point to a folder
with subfolders. This can be very useful when training on several distinct subsets of ground truth data.

--diameter
should be set to 0 (and is now 0 by default) to disable rescaling. Anything else will rescale your images relative
to a mean diameter of 30 (see Cell diameter), such that --diameter 15 will upscale your image by a factor of
2 along each axis and --diameter 60 will likewise downscale by a factor of 2. If you need automatic diameter
estimation, see Diameter and the Size Model.

--nchan, --nclasses
define the number of image channels and the number of prediction classes. These should always be specified
for custom models, as the defaults are --nchan 1 (mono-channel images) and --nclasses 2 (flow and distance
field predictions). If you train a model with --nclasses 3 (add the boundary field) or have multichannel images
these will be in the model file name. Use these when running the model, too, both in CLI and in cellpose_omni.
models.CellposeModel().

--all_channels
tells Omnipose to use all nchan channels for segmentation. The relatively complicated --chan and --chan2
settings from Cellpose are still available, but I never use them. I highly recommend preprocessing your training
set to have the channels you want to use (and for evaluation, do the same preprocessing in a script/notebook).

--channel_axis
lets you specify where your channels are in your arrays. Conventional ordering is CYX for multichannel 2D
images, so --channel_axis defaults to 0. RGB images will have --channel_axis 2.
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Warning: Paths given to --dir or --test_dir must absolute paths.

10.1 Hyperparameters

It is best for reproducibility to explicitly choose hyperparameters at runtime rather than relying on defaults.

--RAdam
selects the RAdam optimizer (versus the default SGD). I found RAdam to be a bit faster and more stable compared
to SGD and other optimizers.

--learning_rate
controls the optimizer step size.

--batch_size
controls the number of images the network sees for each step (with the last batch being smaller if the number of
images is not evenly divisible by batch_size). A random crop is selected from each image (see --tyx). This
means that only a portion of each image is seen during a given epoch. Smaller batches can sometimes lead to
better generalization. Larger batches can lead to better stability. I have found that it does not make a very large
difference in model performance, but larger batches can train faster (see --dataparallel).

--tyx
controls the crop size for selecting a sample from each training image (see Image dimensions).

--n_epochs
controls how many times the network is shown the full dataset. I usually do 4000.

--dataloader
toggles on parallel dataloading. Preprocessing batches for training is a CPU bottleneck, but the DataParallel
library helps a lot with that. Use --num_workers to control how many cores will participate. This is only a
benefit when you have more images in your training set than cores on your machine.

10.2 Model saving

You can choose how often to save your models with --save_every <n>. This overwrites the model every time. To
save a new model each n epochs, you can use save_each (useful for debugging / comparing across epochs).

10.3 Training data

Your training set should consist of at least two tuples of images, labels, and (optionally) label link files.
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10.3.1 File naming conventions

Each tuple of images and labels should be formatted as <base><img_filter>.<img_ext>,
<base><mask_filter>.<mask_ext>, and (optionally) <base>_links.txt. base can be any string. The
img_filter defaults to an empty string '' and the mask_filter defaults to _masks. These can be arranged in a
single training folder:

folder/
A.tif
A_masks.tif
B.tif
B_masks.tif
...

Or in subfolders (when using --look_one_level_down):

folder/
subfolder_1/

A.tif
A_masks.tif

subfolder_2/
B.tif
B_masks.tif
...

...

If you use the --img_filter option (--img_filter img in this case), the suffix only goes on image files:

folder/
A_img.tif
A_masks.tif
B_img.tif
B_masks.tif
...

10.3.2 File extensions

Microscopy images should generally be saved in a lossless format like PNG or TIF. Instance label matrices may likewise
be stored as images in either PNG or TIF. Note that TIF supports up to 32 bits per channel whereas PNG only supports
16. That said, if you have more than 216 − 1 = 65535 labels in one image, you should definitely be cropping your
images into several smaller images.

10.3.3 Image dimensions

You should aim to make training images of roughly size (512,512). During training, the tyx parameter (set to
224,224 by default) controls the size of warped image crops in each batch shown to the network. Although the true
rectangular patch selected from each image in a batch has randomly expanded or contracted dimensions (within a range
0.5-1.5), you should aim to have the tyx dimensions roughly half that of the images in the training set. If much smaller,
then each image will not be sufficiently covered during an epoch (requiring more epochs to converge). Larger tyx will
just slow down training and possibly hurt generalizability.
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If an image dimension is substantially larger than 512 px, subdivide it along that axis. For example, (2048,2048)
images should be split into 16 (512,512) images (4 along each axis). Smaller images are far easier to annotate
correctly.

If your image dimensions are substantially smaller than 512 px, you can instead decrease the tyx parameter. For
example, if your training images are around size (256,256), then I would recommend the CLI flag --tyx 128,128.

Note: The tyx tuple elements must be evenly divisible by 8 (for U-net downsampling).

10.3.4 Object density

As a general rule, you want to train on images with densely packed objects. This is to balance the foreground class
to the background class. In other words, we want Omnipose to focus on predicting good output in foreground regions
rather than zero output in background regions. If your images have a lot of useless background, crop out just the denser
regions. This can be done automatically if you can segment clusters/microcolonies of cells. You can use functions
in omnipose.utils for processing a binary image into crops that you can then join into an ensemble image using
a rectangle packing algorithm. Training on these images allows Omnipose to see the same number of cells but a lot
faster, as it does not waste time looking at too much background.

10.3.5 Ground truth quality

Garbage in, garbage out. It is better to have fewer images with meticulously crafted, consistent labels than many images
with sloppy labels. Your labels should...

1. be based on supplemental channels wherever the primary channel is ambiguous

2. be label matrices, not semantic (binary) masks

3. not miss a single cell

4. extend to cell boundaries

5. meet each other at cell interfaces

You will probably spend 10x more time annotating ground truth images than acquiring them, so it is worth putting in
the effort to find a membrane dye that does not conflict with main channel(s) on which your model will be trained. This
is purely for the purposes of having a physiological reference for the ground truth of cell extent and cell septation, not
for training the segmentation model.

Tip: If using a transmissive modality like phase contrast or brightfield or DIC, use the same filter cube as your
fluorescence channel. This usually removes any offset between the channels. Otherwise, be sure to do multimodal
registration between the channels.
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10.4 Transfer learning

You can use --pretrained_model None to train from scratch or --pretrained_model <model path> to start
from an existing model. Once a model is initialized and trained, you cannot change its structure. This is defined by
nchan (the number of channels used for segmentation), nclasses (the number of prediction classes), and dim (the
dimension of the images). You must use precisely the same nchan, nclasses, and dim that were used to train the
existing model. See Models for a table of the pretrained model parameters.

10.5 Diameter and the Size Model

The Cellpose pretrained models are trained using resized images so that the cells have the same median diameter across
all images. If you choose to use a pretrained model, then this fixed median diameter is used. Omnipose models are
generally not trained with rescaling. cyto2_omni is the exception, as its images are extremely diverse in size.

If you choose to train from scratch, you can set the median diameter you want to use for rescaling with the --diameter
flag, or set it to 0 to disable rescaling. The cyto, cyto2, and cyto2_omni models were trained with a diameter of 30
pixels and the nuclei model was trained with a diameter of 17 pixels.

If your target image set varies a lot in cell diameter (i.e., the images you want to segment vary unpredictably in size),
you may also want to learn a SizeModel() that predicts the diameter from the network style vectors. Add the flag
--train_size and this model will be trained and saved as an *.npy file. Omnipose models generally do not come
with a SizeModel(), with the exception of cyto2_omni.

10.6 Examples

To train on cytoplasmic images (green cyto and red nuclei) starting with a pretrained model from cellpose_omni (cyto
or nuclei):

omnipose --train --dir <train_path> --pretrained_model cyto --chan 2 --chan2 1

You can train from scratch as well:

omnipose --train --dir <train_path> --pretrained_model None

You can also specify the full path to a pretrained model to use:

omnipose --dir <train_path> --pretrained_model <model_path> --save_png

To train the bact_phase_omni model from scratch using the same parameters from the Omnipose paper, download
the dataset and run

omnipose --train --use_gpu --dir <bacterial_dataset_directory> --mask_filter _masks \
--n_epochs 4000 --pretrained_model None --learning_rate 0.1 --diameter 0 \
--batch_size 16 --RAdam --nclasses 3
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10.7 Training 3D models

To train a 3D model on image volumes, specify the dimension argument: --dim 3. You may run out of VRAM on
your GPU. In that case, you can specify a smaller crop size, e.g., --tyx 50,50,50. The command I used in the paper
on the Arabidopsis thaliana lateral root primordia dataset was:

omnipose --use_gpu --train --dir <path> --mask_filter _masks \
--n_epochs 4000 --pretrained_model None --learning_rate 0.1 --save_every 50 \
--save_each --verbose --look_one_level_down --all_channels --dim 3 \
--RAdam --batch_size 4 --diameter 0 --nclasses 3
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ELEVEN

MODELS

All 2D models originally published in the Cellpose and Omnipose papers use nchan=2. This is because Cellpose
defaults are set to train models that use two channels for segmentation (usually cytoplasm and nucleus). Images without
a second channel are just padded with 0s. I think most users will train Omnipose on mono-channel images, so now
nchan=1 by default.

Tip: Always specify nchan and nclasses when training and evaluating models.

Omnipose used to have a boundary prediction, so nclasses=3 (flow field, distance field, and boundary field in 2D).
The current version of Omnipose no longer needs a boundary prediction, so nclasses=2 is the default.

See the table below for named models and their corresponding nchan, nclasses.

11.1 Pretrained models

model nchan nclasses dim
bact_phase_omni 2 3 2
bact_fluor_omni 2 3 2
cyto2_omni 2 3 2
worm_omni 2 3 2
plant_omni 2 3 3
bact_phase_omni_2 1 2 2

Cellpose models all have nchan=2, nclasses=2, and dim=2 (3D Cellpose uses 2D models to approximate 3D out-
put). This means that if you wanted to, you could train an Omnipose model based on a Cellpose model using these
hyperparameters (see Transfer learning).
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CHAPTER

TWELVE

IN A NOTEBOOK

I have three thorough tutorials on using Omnipose in a Jupyter notebook. The first focuses on mono-channel segmen-
tation of locally saved images. The second shows how to use a second channel to aid in segmentation, also taking
the opportunity to demonstrate how to download images on-the-fly in a notebook. The third shows how to do 3D
segmentation, dealing with GPU VRAM bottlenecks and visualization strategies along the way.

12.1 The basics in 2D

This notebook demonstrates how to load images, display them, segment them using Omnipose, and visualize both the
segmentation results and the intermediate network output. Here we show the details behind the most typical work-
flow: single-channel segmentation. The bacterial images used are (1) from my own image library and (2-5) from
the DeLTA2.0 paper. From the latter, we shall see how to handle images that are intrinsically grayscale but were ex-
ported and published as RGB(A) - i.e., there is no extra information in those extra channels to aid segmentation. For
two-channel segmentation, see the multi_channel_cyto notebook.

Before running this notebook, install the latest version of Omnipose from GitHub.

1 # Import dependencies
2 import numpy as np
3 from cellpose_omni import models, core
4

5 # This checks to see if you have set up your GPU properly.
6 # CPU performance is a lot slower, but not a problem if you
7 # are only processing a few images.
8 use_GPU = core.use_gpu()
9 print('>>> GPU activated? {}'.format(use_GPU))

10

11 # for plotting
12 import matplotlib as mpl
13 import matplotlib.pyplot as plt
14 mpl.rcParams['figure.dpi'] = 300
15 plt.style.use('dark_background')
16 %matplotlib inline
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12.1.1 How to load your images

There are several ways to load your image files into a notebook. If you have a specific set of images, put their full paths
into a list. For example:

# make it a list even if there is only one file
files = ['path_to_image_1']
files = ['path_to_image_1','path_to_image_2']

# you can also add to the list like so:
files = files + ['path_to_image_3']

Alternatively, you can load all the images in a directory. Here are a few templates you can use to get the list of directories
automatically by searching for image files matching a cetrain file lane with an extension and keywords in the file name.

from pathlib import Path

basedir = '<path_to_image_folder>'
# use rglob to search subfolders recursively
files = [str(p) for p in Path(basedir).rglob("*.tif")]
# change the search string to grab only one channel
files = [str(p) for p in Path(basedir).glob("*C1.png")]
# specify a match anywhere in the file name
files = [str(p) for p in Path(basedir).glob("*488*.png")]

We can also use the cellpose_omni.io library to grab all the images in the test_files folder. This is very handy for
grabbing images of different extensions. Here we are using four RGB(A) images from the DeLTA 2.0 training set (on
which the bact_phase_omni model has never been trained) as well as an RGB image acquired in the same lab as much
of the Omnipose bact_phase dataset.

1 from pathlib import Path
2 import os
3 from cellpose_omni import io
4 import omnipose
5 omnidir = Path(omnipose.__file__).parent.parent
6 basedir = os.path.join(omnidir,'docs','test_files')
7 files = io.get_image_files(basedir)

Next we read in the images from the file list. It's a good idea to display the images before proceeding. Here I happen
to be reading in some RBG tiles of grayscale phase contrast images (such as you might use for figures etc.) as well
as some single-channel images. As part of the visualization process, the images are rescaled to be in the range 0-1.
Omnipose does this exact thing internally (you don't have to rescale them prior to running segmentation via CLI).

1 from cellpose_omni import io, transforms
2 from omnipose.utils import normalize99
3 imgs = [io.imread(f) for f in files]
4

5 # print some info about the images.
6 for i in imgs:
7 print('Original image shape:',i.shape)
8 print('data type:',i.dtype)
9 print('data range: min {}, max {}\n'.format(i.min(),i.max()))

10 nimg = len(imgs)
11 print('\nnumber of images:',nimg)

(continues on next page)
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(continued from previous page)

12

13 fig = plt.figure(figsize=[40]*2,frameon=False) # initialize figure
14 print('\n')
15 for k in range(len(imgs)):
16 img = transforms.move_min_dim(imgs[k]) # move the channel dimension last
17 if len(img.shape)>2:
18 # imgs[k] = img[:,:,1] # could pick out a specific channel
19 imgs[k] = np.mean(img,axis=-1) # or just turn into grayscale
20

21 imgs[k] = normalize99(imgs[k])
22 # imgs[k] = np.pad(imgs[k],10,'edge')
23 print('new shape: ', imgs[k].shape)
24 plt.subplot(1,len(files),k+1)
25 plt.imshow(imgs[k],cmap='gray')
26 plt.axis('off')

Original image shape: (287, 377, 3)
data type: uint8
data range: min 4, max 22

Original image shape: (564, 564, 3)
data type: uint8
data range: min 30, max 203

Original image shape: (783, 908)
data type: uint8
data range: min 0, max 255

Original image shape: (396, 390, 4)
data type: uint8
data range: min 49, max 255

Original image shape: (281, 310)
data type: uint16
data range: min 360, max 64813

Original image shape: (384, 392)
data type: uint16
data range: min 0, max 65535

Original image shape: (334, 321)
data type: uint16
data range: min 2582, max 39614

number of images: 7

new shape: (287, 377)
new shape: (564, 564)
new shape: (783, 908)
new shape: (396, 390)

(continues on next page)
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(continued from previous page)

new shape: (281, 310)
new shape: (384, 392)
new shape: (334, 321)

Note that the first two images are RGB, the third and fifth are mono-channel, and the fourth is RGBA (the alpha channel
encodes transparency). Exporting to RGB is usually just done for making diagrams or making images compatible with
non-scientific viewing software. Pro tip: Adobe Illustrator will not interpolate the pixels in your image if you save
it as RGB, but it will if you keep it mono-channel. Usually you want exact, non-interpolated (pixelated) images to
be presented since it is your raw data, so you can convert it to grayscale by im_RGB = [im,im,im] (or more slick,
im_RGB = [im,]*3 or *4 for RGBA). However, storing all your images this way is a waste of space - just do it for the
ones you need for a figure.

Also note that the DeLTA images (1-4) are uint8, so 0 to 2**8-1 = 255. Image 1 only takes up values in the range
4 to 22 out of a possible 0 to 255, meaning it was probably way too dark and not rescaled prior to conversion to an
8-bit image. In my experience, images are typically 14-bit (that depends on your camera) and therefore saved as 16-bit
lossless formats like PNG or TIF (Omnipose can detect and segment JPEGs, but you would never use those for anything
scientific, even for figures due to compression artifacts). Using only 22-4 = 18 levels of gray to depict the cells causes
the distinct 'posterized' effect that you can see if you zoom up on the image.

12.1.2 Initialize model

Here we use one of the built-in model names. You can print out the available model names, too:

1 import cellpose_omni
2 from cellpose_omni import models
3 from cellpose_omni.models import MODEL_NAMES
4

5 MODEL_NAMES

['bact_phase_omni',
'bact_fluor_omni',
'worm_omni',
'worm_bact_omni',
'worm_high_res_omni',
'cyto2_omni',
'plant_omni',
'bact_phase_cp',
'bact_fluor_cp',
'plant_cp',
'worm_cp',
'cyto',
'nuclei',
'cyto2']

We will choose the bact_phase_omni model.
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1 model_name = 'bact_phase_omni'
2 model = models.CellposeModel(gpu=use_GPU, model_type=model_name)

2024-05-10 00:54:43,023 [INFO] models __init__....() line␣
→˓427 >>bact_phase_omni<< model set to be used
2024-05-10 00:54:43,050 [INFO] core _use...torch() line␣
→˓74 ** TORCH GPU version installed and working. **
2024-05-10 00:54:43,051 [INFO] assi...evice() line␣
→˓85 >>>> using GPU

12.1.3 Run segmentation

1 import time
2 chans = [0,0] #this means segment based on first channel, no second channel
3

4 n = [-1] # make a list of integers to select which images you want to segment
5 n = range(nimg) # or just segment them all
6

7 # define parameters
8 params = {'channels':chans, # always define this with the model
9 'rescale': None, # upscale or downscale your images, None = no rescaling

10 'mask_threshold': -1, # erode or dilate masks with higher or lower values
11 'flow_threshold': 0, # default is .4, but only needed if there are spurious␣

→˓masks to clean up; slows down output
12 'transparency': True, # transparency in flow output
13 'omni': True, # we can turn off Omnipose mask reconstruction, not advised
14 'cluster': True, # use DBSCAN clustering
15 'resample': True, # whether or not to run dynamics on rescaled grid or␣

→˓original grid
16 'verbose': False, # turn on if you want to see more output
17 'tile': False, # average the outputs from flipped (augmented) images; slower,␣

→˓usually not needed
18 'niter': 7, # None lets Omnipose calculate # of Euler iterations (usually <20)␣

→˓but you can tune it for over/under segmentation
19 'augment': False, # Can optionally rotate the image and average outputs,␣

→˓usually not needed
20 'affinity_seg': False, # new feature, stay tuned...
21 }
22

23 tic = time.time()
24 masks, flows, styles = model.eval([imgs[i] for i in n],**params)
25

26 net_time = time.time() - tic
27

28 print('total segmentation time: {}s'.format(net_time))

0%| | 0/7 [00:00<?, ?it/s]

total segmentation time: 1.0175395011901855s

Note that since some functions require just-in-time numba compilation, the first round of segmentation will be slightly
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slower than subsequent runs.

12.1.4 Plot the results

1 from cellpose_omni import plot
2 import omnipose
3

4 for idx,i in enumerate(n):
5

6 maski = masks[idx] # get masks
7 bdi = flows[idx][-1] # get boundaries
8 flowi = flows[idx][0] # get RGB flows
9

10 # set up the output figure to better match the resolution of the images
11 f = 5
12 szX = maski.shape[-1]/mpl.rcParams['figure.dpi']*f
13 szY = maski.shape[-2]/mpl.rcParams['figure.dpi']*f
14 fig = plt.figure(figsize=(szY,szX*4))
15 fig.patch.set_facecolor([0]*4)
16

17 plot.show_segmentation(fig, omnipose.utils.normalize99(imgs[i]),
18 maski, flowi, bdi, channels=chans, omni=True,
19 interpolation=None)
20

21 plt.tight_layout()
22 plt.show()
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12.1.5 Save the results

Often you will want to save your masks before moving on to analysis (that way to can just load them in instead of
re-running segmentation). I improved the cellpose.io function quite a bit to be more flexible in where it can save.
See the documentation page for the full list of options.

1 io.save_masks(imgs, masks, flows, files,
2 png=False,
3 tif=True, # whether to use PNG or TIF format
4 suffix='', # suffix to add to files if needed
5 save_flows=False, # saves both RGB depiction as *_flows.png and the raw␣

→˓components as *_dP.tif
6 save_outlines=False, # save outline images
7 dir_above=0, # save output in the image directory or in the directory␣

→˓above (at the level of the image directory)
8 in_folders=True, # save output in folders (recommended)
9 save_txt=False, # txt file for outlines in imageJ

10 save_ncolor=False) # save ncolor version of masks for visualization and␣
→˓editing

12.1.6 Debug results

The RGB flows shown above will give you some insight as to if there is an issue with the flow field outputs, but you
can also check out the boundary and distance output:

1 for idx,i in enumerate(n):
2

3 disti = flows[idx][2] # distance field prediction
4 bdlti = flows[idx][4] # boundary logits prediction
5 omnipose.plot.imshow(np.hstack([disti,bdlti]),5, cmap='viridis')
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Notes on the above

The distance field is trained with background pixels set to -5 in older models and -<mean diameter> in newer models.
This helps to make the desired network output more balanced and give more distinction between edge pixels (which
have values close to 0) and background (which ordinarily would have a value of 0). The flow field, being the gradient
of the distance field, by definition has a magnitude of 1 everywhere - but we rescale it by 5 for training. This helps by
bringing the desired flow component output more in the range of the boundary output, which is the input to the sigmoid
function (so-called 'logits') and therefore ranges from about -5 to 5.

What you can see in the images above is that the features in the boundary, distance, and flow fields are all very consistent
with each other. For example, the flow field has positive divergence where the boundary output is high and negative
divergence where the distance field is high. This is by design, as I included the boundary field for the sole purpose of
improving the prediction accuracy on the flow and distance fields.

12.2 Multiple channels

Omnipose inherits the capability of Cellpose to segment based on multi-channel images. We will use this as an op-
portunity to show how we can run several models at once on the same image(s), in this case comparing Omnipose to
Cellpose trained on the cyto2 dataset.

1 # First, import dependencies.
2 import numpy as np
3 import time, os, sys
4 from cellpose_omni import models, core, utils

(continues on next page)
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5

6

7 # This checks to see if you have set up your GPU properly.
8 # CPU performance is a lot slower, but not a problem if
9 # you are only processing a few images.

10 use_GPU = core.use_gpu()
11 print('>>> GPU activated? %d'%use_GPU)
12

13 # for plotting
14 import matplotlib.pyplot as plt
15 plt.style.use('dark_background')
16 import matplotlib as mpl
17 %matplotlib inline
18 mpl.rcParams['figure.dpi'] = 300
19 from omnipose.plot import imshow, colorize

2024-01-18 00:27:35,995 [INFO] ** TORCH GPU version installed and working. **
>>> GPU activated? 1

12.2.1 Load file

This is one of the images from the cyto2 test dataset. Note that it is a good idea to always work with lists, even when
the list of images is 1 long. It allows you to reuse your code easily when you do have a larger set of images to process.

1 from urllib.parse import urlparse
2 import skimage.io
3

4

5 urls = ['http://www.cellpose.org/static/images/img02.png']
6 files = []
7 for url in urls:
8 parts = urlparse(url)
9 filename = os.path.basename(parts.path)

10 if not os.path.exists(filename):
11 sys.stderr.write('Downloading: "{}" to {}\n'.format(url, filename))
12 utils.download_url_to_file(url, filename)
13 files.append(filename)
14

15 imgs = [skimage.io.imread(f) for f in files]
16 # print(imgs[0].shape)
17 imgs = [np.stack((im[...,-1],im[...,1])) for im in imgs] # put cytosol in 1st channel,␣

→˓nucleus in 2nd
18 nimg = len(imgs)

(349, 467, 3)

Read in the images from the file list. It's a good idea to display the images before proceeding.

1 from cellpose_omni import io, transforms
2

(continues on next page)
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3 # print some infor about the images
4 for i in imgs:
5 print('img shape:',i.shape)
6 nimg = len(imgs)
7 # print(nimg)
8

9 colors = np.array([[1,0,0],[0,1,0]])*1.0
10 for k in range(len(imgs)):
11 imgs[k] = transforms.normalize99(imgs[k],omni=True)
12 rgb = colorize(imgs[k],colors=colors)
13 imshow(rgb)

img shape: (2, 349, 467)

12.2.2 Initialize models

We will compare two models here: cyto2 (Cellpose) and cyto2_omni. The latter was trained via the following com-
mand:

python -m cellpose --train --use_gpu --dir /home/kcutler/DataDrive/cyto2/train --mask_
→˓filter _masks --n_epochs 4000 --pretrained_model None --learning_rate 0.1 --diameter␣
→˓36 --save_every 50 --save_each --omni --verbose --chan 1 --chan2 2 --RAdam --batch_
→˓size 16 --img_filter _img

1 model_name = ['cyto2','cyto2_omni']
2 L = len(model_name)
3 model = [models.CellposeModel(gpu=use_GPU, model_type=m) for m in model_name]

2024-01-18 00:31:08,507 [INFO] >>cyto2<< model set to be used
2024-01-18 00:31:08,540 [INFO] ** TORCH GPU version installed and working. **
2024-01-18 00:31:08,540 [INFO] >>>> using GPU
2024-01-18 00:31:08,651 [INFO] >>cyto2_omni<< model set to be used
2024-01-18 00:31:08,652 [INFO] ** TORCH GPU version installed and working. **
2024-01-18 00:31:08,652 [INFO] >>>> using GPU
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12.2.3 Run segmentation

The channels input can be very confusing. In the Cellpose documentation, it is stated that the list [chan,chan2]
should represent the main channel to segment (chan) and the optional nuclear channel (chan2). But to train via CLI,
chan is the "channel to segment" and chan2 is the nuclear channel, and the Cellpose team states the CLI command
used to train their model used --chan 2 --chan2 1. Because 0 is grayscale and 1,2,3 are R,G,B (note the 1-based
indexing here) this means that the given training command actually trains with G cytosol and R nuclei. This might
imply that the cyto2_omni model actually is trained 'incorrectly', if I understood this right.

On top of this, the downloaded image has nuclei in channel 2 and cytosol in channel 1 (blue and green, respectively),
whereas the cyto2 dataset shows cytosol as channel 0 and nuclei as channel 1 (this may be a result of using OpenCV,
which usies BGR by default instead of RGB). So in fact, I should have trained the cyto2_omni model with --chan 1
--chan2 2. (Have not yet done this with most recent models...) Keep this in mind as you train your own models.

Note: You can train Omnipose on arbitrary numbers of channels using the --all_channels parameter. The reason
for the cyto* models being trained with two channel was to focus on eukaryotes with cytosol and nuclei tags while
also including many other images that might be single-channel. The chan, chan2 arguments and corresponding code in
Cellpose is thus highly specific to this use case. Omnipose should probably always be trained with --all_channels
on a dataset with the same number of channels across all images. After training, initialize the model with nchan=nchan
and evaluate using chans=None.

For now, the following shows what channel arguments you need for the provided cyto2 models:

1 chans = [[2,1],[1,2]] # green cytoplasm [2] and red nucleus [1], see above
2 n = range(nimg)
3

4 # define parameters
5 mask_threshold = [-1,-1,-1] #new model might need a bit lower
6 verbose =0 # turn on if you want to see more output
7 use_gpu = use_GPU #defined above
8 transparency = True # transparency in flow output
9 rescale= None # give this a number if you need to upscale or downscale your images

10 flow_threshold = 0 # default is .4, but only needed if there are spurious masks to clean␣
→˓up; slows down output

11 resample = False #whether or not to run dynamics on rescaled grid or original grid
12

13 N = L+1 # three options: pure cellpose, mixed, omnipose, new omnipose
14 omni = [0,1,1]
15 ind = [0,0,1]
16 masks, flows, styles = [[]]*N, [[]]*N, [[]]*N
17

18 diameter = 30
19 for i in range(N):
20 masks[i], flows[i], styles[i] = model[ind[i]].eval([imgs[i] for i in n],

→˓channels=chans[ind[i]],
21 diameter=diameter,
22 mask_threshold=mask_threshold[i],
23 transparency=transparency,
24 flow_threshold=flow_threshold,
25 omni=omni[i], #toggle omni
26 resample=resample,verbose=verbose,
27 cluster=omni[i],
28 interp=True, tile=False)
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12.2.4 Plot the results

1 from cellpose_omni import plot
2 import omnipose
3

4 for idx,i in enumerate(n):
5

6 for k,ki in enumerate(ind):
7

8 print('model: {}, omni: {}'.format(model_name[ki],omni[ki]))
9 maski = masks[k][idx] # get masks

10 flowi = flows[k][idx][0] # get RGB flows
11 imgi = omnipose.utils.normalize99(imgs[i])
12

13 # set up the output figure to better match the resolution of the images
14 f = 10
15 szX = maski.shape[-1]/mpl.rcParams['figure.dpi']*f
16 szY = maski.shape[-2]/mpl.rcParams['figure.dpi']*f
17 fig = plt.figure(figsize=(szY,szX*4))
18 fig.patch.set_facecolor([0]*4)
19

20 plot.show_segmentation(fig,
21 imgi,
22 maski, flowi,
23 channels=chans[i],
24 channel_axis=0,
25 omni=True,
26 img_colors=colors,
27 interpolation=None)
28

29 plt.tight_layout()
30 plt.show()

model: cyto2, omni: 0

model: cyto2, omni: 0
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model: cyto2_omni, omni: 1

Some comments on the above: Omnipose pre-processes the images slightly differently (see normalize99) and there-
fore the flow is a bit different even with the same model and input image compared to stock Cellpose. The cluster
option helps a lot to get accurate masks with Omnipose in thin regions, but can result in under-segmentation between
cells with poorly-defined flow fields. This can be a weakness of Omnipose relative to Cellpose, but as seen in the paper,
Omnipose does slightly better than Cellpose on the cyto2 dataset on average. On roundish and low-accuracy datasets
like cyto2, Omnipose simply does better in some areas and worse in others.

12.3 Omnipose in 3D

You can use the dim (dimension) argument to tell Omnipose to segment your images using a 3D model. This means
that an image stack or 3D array is treated as a 3D volume given to a network trained on 3D volumes. This is very
different from do_3D in Cellpose, which cleverly leveraged 2D predictions on all 2D slices of a 3D volume to construct
a 3D flow field for segmentation. It turns out that the pseudo-ND Cellpose flows are an approximation to the true 3D
flows of Omnipose, because the flows in each slice point to a local center of the cell, a.k.a. the cell skeleton to which
the Omnipose field points. Thus, is not recommended to use Omnipose 2D slice predictions with do_3D. Instead, this
notebook assumes you have trained a 3D model such as the plant_omni model.

1 # Import dependencies
2 import numpy as np
3 from cellpose_omni import models, core
4

5 # This checks to see if you have set up your GPU properly.
6 # CPU performance is a lot slower, but not a problem if you
7 # are only processing a few images.
8 use_GPU = core.use_gpu()
9 print('>>> GPU activated? %d'%use_GPU)

10

11 # for plotting
12 import matplotlib as mpl
13 import matplotlib.pyplot as plt
14 mpl.rcParams['figure.dpi'] = 300

(continues on next page)
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15 plt.style.use('dark_background')
16 %matplotlib inline

2023-08-08 00:57:34,560 [INFO] ** TORCH GPU version installed and working. **
>>> GPU activated? 1

12.3.1 Read in data

Here I am choosing one of the scaled-down volumes of the plant Arabidopsis thaliana dataset we used in the Omnipose
paper.

1 from pathlib import Path
2 import os
3 from cellpose_omni import io
4

5 basedir = os.path.join(Path.cwd().parent,'test_files_3D')
6 files = io.get_image_files(basedir)
7 files # this displays the variable if it the last thing in the code block

['/home/kcutler/DataDrive/omnipose/docs/test_files_3D/Movie1_t00004_crop_gt.tif']

1 from cellpose_omni import io, transforms
2 from omnipose.utils import normalize99
3

4 imgs = [io.imread(f) for f in files]
5

6 # print some info about the images.
7 for i in imgs:
8 print('Original image shape:',i.shape)
9 print('data type:',i.dtype)

10 print('data range:', i.min(),i.max())
11 nimg = len(imgs)
12 print('number of images:',nimg)

Original image shape: (162, 207, 443)
data type: uint8
data range: 0 247
number of images: 1

12.3.2 Initialize model

plant_omni is the model trained on these plant cell images. (The image we loaded is from the test set, of course.)

1 from cellpose_omni import models
2 model_name = 'plant_omni'
3

4 dim = 3
5 nclasses = 3 # flow + dist + boundary

(continues on next page)
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6 nchan = 1
7 omni = 1
8 rescale = False
9 diam_mean = 0

10 use_GPU = 0 # Most people do not have enough VRAM to run on GPU... 24GB not enough for␣
→˓this image, need nearly 48GB

11 model = models.CellposeModel(gpu=use_GPU, model_type=model_name, net_avg=False,
12 diam_mean=diam_mean, nclasses=nclasses, dim=dim,␣

→˓nchan=nchan)

2023-08-08 00:57:44,364 [INFO] >>plant_omni<< model set to be used
sdggsfgs
2023-08-08 00:57:44,364 [INFO] >>>> using CPU

12.3.3 Run segmentation

1 import torch
2 torch.cuda.empty_cache()
3 mask_threshold = -5 #usually this is -1
4 flow_threshold = 0.
5 diam_threshold = 12
6 net_avg = False
7 cluster = False
8 verbose = 1
9 tile = True

10 chans = None
11 compute_masks = 1
12 resample=False
13 rescale=None
14 omni=True
15 flow_factor = 10 # multiple to increase flow magnitude, useful in 3D
16 transparency = True
17

18 nimg = len(imgs)
19 masks_om, flows_om = [[]]*nimg,[[]]*nimg
20

21 # splitting the images into batches helps manage VRAM use so that memory can get␣
→˓properly released

22 # here we have just one image, but most people will have several to process
23 for k in range(nimg):
24 masks_om[k], flows_om[k], _ = model.eval(imgs[k],
25 channels=chans,
26 rescale=rescale,
27 mask_threshold=mask_threshold,
28 net_avg=net_avg,
29 transparency=transparency,
30 flow_threshold=flow_threshold,
31 omni=omni,
32 resample=resample,
33 verbose=verbose,

(continues on next page)
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34 diam_threshold=diam_threshold,
35 cluster=cluster,
36 tile=tile,
37 compute_masks=compute_masks,
38 flow_factor=flow_factor)

2023-08-08 00:57:45,752 [INFO] Evaluating with flow_threshold 0.00, mask_threshold -5.00
2023-08-08 00:57:45,753 [INFO] using omni model, cluster False
2023-08-08 00:57:45,753 [INFO] not using dataparallel
2023-08-08 00:57:45,878 [INFO] multi-stack tiff read in as having 162 planes 1 channels
2023-08-08 00:58:36,584 [INFO] mask_threshold is -5.000000
2023-08-08 00:58:36,585 [INFO] Using hysteresis threshold.
dP_ times 10 for >2d, still experimenting
2023-08-08 00:58:37,615 [INFO] niter is None
2023-08-08 00:59:54,186 [INFO] Mean diameter is 25.683111
2023-08-08 00:59:54,307 [INFO] cluster: False, SKLEARN_ENABLED: True
2023-08-08 00:59:54,571 [INFO] nclasses: 5, mask.ndim: 3
2023-08-08 00:59:54,581 [INFO] Using boundary output to split edge defects.
2023-08-08 00:59:54,776 [INFO] Done finding masks.
2023-08-08 00:59:55,705 [INFO] compute_masks() execution time: 79.1 sec
2023-08-08 00:59:55,705 [INFO] execution time per pixel: 5.18728e-06 sec/px
2023-08-08 00:59:55,709 [INFO] execution time per cell pixel: 1.45631e-05 sec/px

12.3.4 Plot results

3D segmentation is a lot harder to show than 2D. If anyone figures out a good way to use one of the many tools out
there (ipyvolume, K3D-Jupyter, itkwidgets, ipygany) for label visualization (not image volumes), please let me
know. Few of these are in active development, and my own 3D work requires robust label editing tools anyway, which
I do not think any available tools offer. Hence I shall just load in Napari and show you an auto-captured screenshot.

1 %%capture
2 import ncolor
3 mask = masks_om[0]
4 mask_nc = ncolor.label(mask,max_depth=20)
5

6 import napari
7 viewer = napari.view_labels(mask_nc);
8 viewer.dims.ndisplay = 3
9 viewer.camera.center = [s//2 for s in mask.shape]

10 viewer.camera.zoom=1
11 viewer.camera.angles=(10.90517458968619, -20.777067798396835, 58.04311170773853)
12 viewer.camera.perspective=0.0
13 viewer.camera.interactive=True
14

15 img = viewer.screenshot(size=(1000,1000),scale=1,canvas_only=True,flash=False)

2023-08-08 00:59:58,954 [WARNING] Could not connect "org.freedesktop.IBus" to␣
→˓globalEngineChanged(QString)
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1 plt.figure(figsize=(3,3),frameon=False)
2 plt.imshow(img)
3 plt.axis('off')
4 plt.show()

12.3.5 Plot orthogonal slices

1 from cellpose_omni import plot
2 from omnipose.plot import apply_ncolor
3

4 mu = flows_om[0][1]
5 T = flows_om[0][2]
6 bd = flows_om[0][4]
7 # mu.shape,T.shape,bd.shape
8

9 d = mu.shape[0]
10

11 from omnipose.utils import rescale
12 c = np.array([1]*2+[0]*(d-2))
13 # c = np.arange(d)
14 def cyclic_perm(a):
15 n = len(a)
16 b = [[a[i - j] for i in range(n)] for j in range(n)]
17 return b
18 slices = []
19 idx = np.arange(d)
20 cmap = mpl.colormaps['magma']
21 cmap2 = mpl.colormaps['viridis']
22

23 for inds in cyclic_perm(c):
24 slc = tuple([slice(-1) if i else mu.shape[k+1]//2 for i,k in zip(inds,idx)])
25 flow = plot.dx_to_circ(mu[np.where(inds)+slc],transparency=1)/255
26 dist = cmap(rescale(T)[slc])
27 bnds = cmap2(rescale(bd)[slc])
28 msks = apply_ncolor(masks_om[0][slc])

(continues on next page)
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29

30 fig = plt.figure(figsize=[5]*2,frameon=False)
31 plt.imshow(np.hstack((flow,dist,bnds,msks)),interpolation='none')
32 plt.axis('off')
33 plt.show()
34

4 -color algorthm failed,trying again with 5 colors. Depth 0
5 -color algorthm failed,trying again with 6 colors. Depth 1

4 -color algorthm failed,trying again with 5 colors. Depth 0
5 -color algorthm failed,trying again with 6 colors. Depth 1

Notes on the above

Slices do not always look crisp because we are cutting though boundaries. At these locations, the flow and distance
fields darken and the boundary field brightens. This can result in flat and muddled regions that are hard to interpret.
Again, interactive 3D visualization tools are needed to properly evaluate the results of the segmentation. In this case,
we have cut through the middle of enough cells to confirm that the output looks reasonable.

This small dataset with problematic annotations was sufficient for demonstrating that Omnipose can be used on 3D
data, but I again emphasize that any algorithm will only work well after training on well-annotated, representative
examples. In this case, small cell clusters were neither well-annotated nor well-represented in the training set, and you
can see the negative impact of that in this example.

These 3D models are incredibly VRAM-hungry, so all results in the paper were actually run on an AWS instance. Here
I ran them on CPU, which is much slower but necessary to do even with a 24GB Titan RTX.

54 Chapter 12. In a notebook



omnipose, Release 1.0.6-26-g260e4d3

Runing Omnipose with do_3D

do_3D is not something you want to use with any Omnipose model, but you might want to use it with a 2D Cellpose
model for 3D cells with extended shapes. This is because do_3D computes 2D flow fields from every yx, yz, and xz
slice of the image and composites these components into a 3D field. It turns out that the center-seeking flow slices of
Cellpose end up pointing roughly toward the local 3D skeleton, i.e. the do_3D Cellpose composite field approximates
the true 3D flows of Omnipose. The 2D Omnipose field, on the other hand, cannot be composited into a useful 3D
field.

Althought the do_3DCellpose field directs pixels toward the skeleton, the stock Cellpose mask reconstruction algorithm
tends to oversegment pixels into clusters along the skeleton. To avoid this, you can use a Cellpose model but with
Omnipose mask reconstruciton by usin omni=True. Here is how to do this.

1 from cellpose_omni import models, core
2

3 # define cellpose model
4 model_name = 'plant_cp'
5

6 # this model was trained on 2D slices
7 dim = 2
8 nclasses = 2 # cellpose models have no boundary field, just flow and distance
9

10 # Cellpose defaults to 2 channels;
11 # this is the setup for grayscale in that case
12 nchan = 2
13 chans = [0,0]
14

15 # no rescaling for this model
16 diam_mean = 0
17

18

19 use_GPU = core.use_gpu()
20 model = models.CellposeModel(gpu=use_GPU, model_type=model_name, net_avg=False,
21 diam_mean=diam_mean, nclasses=nclasses, dim=dim,␣

→˓nchan=nchan)
22

23

24 # segmentation parameters
25 omni = 1
26 rescale = False
27 mask_threshold = 0
28 net_avg = 0
29 verbose = 0
30 tile = 0
31 compute_masks = 1
32 rescale = None
33 flow_threshold=0.
34 do_3D=True
35 flow_factor=10
36

37 masks_cp, flows_cp, _ = model.eval(imgs,
38 channels=chans,
39 rescale=rescale,
40 mask_threshold=mask_threshold,

(continues on next page)
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41 net_avg=net_avg,
42 transparency=True,
43 flow_threshold=flow_threshold,
44 verbose=verbose,
45 tile=tile,
46 compute_masks=compute_masks,
47 do_3D=True,
48 omni=omni,
49 flow_factor=flow_factor)

2023-08-08 01:01:25,558 [INFO] ** TORCH GPU version installed and working. **
2023-08-08 01:01:25,558 [INFO] >>plant_cp<< model set to be used
2023-08-08 01:01:25,559 [INFO] ** TORCH GPU version installed and working. **
2023-08-08 01:01:25,560 [INFO] >>>> using GPU
2023-08-08 01:01:25,643 [INFO] using dataparallel
2023-08-08 01:01:25,682 [INFO] multi-stack tiff read in as having 162 planes 1 channels
2023-08-08 01:01:26,362 [INFO] running YX: 162 planes of size (207, 443)
2023-08-08 01:01:26,390 [INFO] 0%| | 0/15 [00:00<?, ?it/s]
2023-08-08 01:01:26,550 [INFO] 7%|6 | 1/15 [00:00<00:02, 6.28it/s]
2023-08-08 01:01:26,700 [INFO] 13%|#3 | 2/15 [00:00<00:01, 6.50it/s]
2023-08-08 01:01:26,850 [INFO] 20%|## | 3/15 [00:00<00:01, 6.58it/s]
2023-08-08 01:01:27,000 [INFO] 27%|##6 | 4/15 [00:00<00:01, 6.62it/s]
2023-08-08 01:01:27,149 [INFO] 33%|###3 | 5/15 [00:00<00:01, 6.64it/s]
2023-08-08 01:01:27,298 [INFO] 40%|#### | 6/15 [00:00<00:01, 6.66it/s]
2023-08-08 01:01:27,448 [INFO] 47%|####6 | 7/15 [00:01<00:01, 6.67it/s]
2023-08-08 01:01:27,597 [INFO] 53%|#####3 | 8/15 [00:01<00:01, 6.68it/s]
2023-08-08 01:01:27,747 [INFO] 60%|###### | 9/15 [00:01<00:00, 6.68it/s]
2023-08-08 01:01:27,896 [INFO] 67%|######6 | 10/15 [00:01<00:00, 6.69it/s]
2023-08-08 01:01:28,046 [INFO] 73%|#######3 | 11/15 [00:01<00:00, 6.69it/s]
2023-08-08 01:01:28,197 [INFO] 80%|######## | 12/15 [00:01<00:00, 6.66it/s]
2023-08-08 01:01:28,347 [INFO] 87%|########6 | 13/15 [00:01<00:00, 6.66it/s]
2023-08-08 01:01:28,497 [INFO] 93%|#########3| 14/15 [00:02<00:00, 6.67it/s]
2023-08-08 01:01:28,641 [INFO] 100%|##########| 15/15 [00:02<00:00, 6.74it/s]
2023-08-08 01:01:28,642 [INFO] 100%|##########| 15/15 [00:02<00:00, 6.66it/s]
2023-08-08 01:01:28,868 [INFO] running ZY: 207 planes of size (162, 443)
2023-08-08 01:01:28,900 [INFO] 0%| | 0/19 [00:00<?, ?it/s]
2023-08-08 01:01:29,030 [INFO] 5%|5 | 1/19 [00:00<00:02, 7.77it/s]
2023-08-08 01:01:29,159 [INFO] 11%|# | 2/19 [00:00<00:02, 7.76it/s]
2023-08-08 01:01:29,288 [INFO] 16%|#5 | 3/19 [00:00<00:02, 7.75it/s]
2023-08-08 01:01:29,417 [INFO] 21%|##1 | 4/19 [00:00<00:01, 7.75it/s]
2023-08-08 01:01:29,546 [INFO] 26%|##6 | 5/19 [00:00<00:01, 7.75it/s]
2023-08-08 01:01:29,675 [INFO] 32%|###1 | 6/19 [00:00<00:01, 7.75it/s]
2023-08-08 01:01:29,806 [INFO] 37%|###6 | 7/19 [00:00<00:01, 7.71it/s]
2023-08-08 01:01:29,935 [INFO] 42%|####2 | 8/19 [00:01<00:01, 7.71it/s]
2023-08-08 01:01:30,065 [INFO] 47%|####7 | 9/19 [00:01<00:01, 7.72it/s]
2023-08-08 01:01:30,194 [INFO] 53%|#####2 | 10/19 [00:01<00:01, 7.73it/s]
2023-08-08 01:01:30,323 [INFO] 58%|#####7 | 11/19 [00:01<00:01, 7.74it/s]
2023-08-08 01:01:30,452 [INFO] 63%|######3 | 12/19 [00:01<00:00, 7.74it/s]
2023-08-08 01:01:30,582 [INFO] 68%|######8 | 13/19 [00:01<00:00, 7.73it/s]
2023-08-08 01:01:30,712 [INFO] 74%|#######3 | 14/19 [00:01<00:00, 7.72it/s]
2023-08-08 01:01:30,841 [INFO] 79%|#######8 | 15/19 [00:01<00:00, 7.73it/s]
2023-08-08 01:01:30,970 [INFO] 84%|########4 | 16/19 [00:02<00:00, 7.73it/s]
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2023-08-08 01:01:31,099 [INFO] 89%|########9 | 17/19 [00:02<00:00, 7.74it/s]
2023-08-08 01:01:31,228 [INFO] 95%|#########4| 18/19 [00:02<00:00, 7.74it/s]
2023-08-08 01:01:31,354 [INFO] 100%|##########| 19/19 [00:02<00:00, 7.79it/s]
2023-08-08 01:01:31,355 [INFO] 100%|##########| 19/19 [00:02<00:00, 7.74it/s]
2023-08-08 01:01:31,694 [INFO] running ZX: 443 planes of size (162, 207)
2023-08-08 01:01:31,732 [INFO] 0%| | 0/14 [00:00<?, ?it/s]
2023-08-08 01:01:31,853 [INFO] 7%|7 | 1/14 [00:00<00:01, 8.28it/s]
2023-08-08 01:01:31,974 [INFO] 14%|#4 | 2/14 [00:00<00:01, 8.25it/s]
2023-08-08 01:01:32,096 [INFO] 21%|##1 | 3/14 [00:00<00:01, 8.24it/s]
2023-08-08 01:01:32,219 [INFO] 29%|##8 | 4/14 [00:00<00:01, 8.21it/s]
2023-08-08 01:01:32,341 [INFO] 36%|###5 | 5/14 [00:00<00:01, 8.21it/s]
2023-08-08 01:01:32,462 [INFO] 43%|####2 | 6/14 [00:00<00:00, 8.22it/s]
2023-08-08 01:01:32,584 [INFO] 50%|##### | 7/14 [00:00<00:00, 8.22it/s]
2023-08-08 01:01:32,705 [INFO] 57%|#####7 | 8/14 [00:00<00:00, 8.22it/s]
2023-08-08 01:01:32,827 [INFO] 64%|######4 | 9/14 [00:01<00:00, 8.22it/s]
2023-08-08 01:01:32,948 [INFO] 71%|#######1 | 10/14 [00:01<00:00, 8.23it/s]
2023-08-08 01:01:33,070 [INFO] 79%|#######8 | 11/14 [00:01<00:00, 8.22it/s]
2023-08-08 01:01:33,191 [INFO] 86%|########5 | 12/14 [00:01<00:00, 8.22it/s]
2023-08-08 01:01:33,313 [INFO] 93%|#########2| 13/14 [00:01<00:00, 8.22it/s]
2023-08-08 01:01:33,432 [INFO] 100%|##########| 14/14 [00:01<00:00, 8.28it/s]
2023-08-08 01:01:33,432 [INFO] 100%|##########| 14/14 [00:01<00:00, 8.23it/s]
2023-08-08 01:01:34,940 [INFO] network run in 9.22s
dP_ times 10 for >2d, still experimenting
2023-08-08 01:01:38,310 [INFO] masks created in 3.37s

12.3.6 Compare masks to ground truth

1 from fastremap import unique
2 mgt = io.imread(files[0][:-4]+'_masks.tif')
3 print('Cellpose do_3D + omni=True: {} masks. \nOmnipose 3D: {} masks. \nGround truth: {}␣

→˓masks'.format(len(unique(masks_cp[0])),
4 ␣

→˓ len(unique(masks_om[0])),
5 ␣

→˓ len(unique(mgt))))

Cellpose do_3D + omni=True: 55 masks.
Omnipose 3D: 204 masks.
Ground truth: 67 masks

For what it's worth, pure Cellpose gives ~550 masks in this volume, pure Omnipose gives ~200, and Cellpose model +
Omnipose mask reconstruction gives ~50. I'm sorry to say that the ground truth for this dataset is quite bad, containing
some undersegmented cells, but more importantly, an entire "ignore" region where there are many, many cells that are
unlabeled. So the count of 67 cells in the ground truth refers only to the long cells on the outside of the root. Thus, 55
cells is a severe under-segmentation of the volume. Let's see why.
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12.3.7 Plot results

1 from cellpose_omni import plot
2 from omnipose.plot import apply_ncolor
3

4 mu = flows_cp[0][1]
5 T = flows_cp[0][2]
6 bd = flows_cp[0][4]
7 # mu.shape,T.shape,bd.shape
8

9 d = mu.shape[0]
10

11 from omnipose.utils import rescale
12 c = np.array([1]*2+[0]*(d-2))
13 # c = np.arange(d)
14 def cyclic_perm(a):
15 n = len(a)
16 b = [[a[i - j] for i in range(n)] for j in range(n)]
17 return b
18 slices = []
19 idx = np.arange(d)
20 cmap = mpl.colormaps['magma']
21 cmap2 = mpl.colormaps['viridis']
22

23 for inds in cyclic_perm(c):
24 slc = tuple([slice(-1) if i else mu.shape[k+1]//2 for i,k in zip(inds,idx)])
25 flow = plot.dx_to_circ(mu[np.where(inds)+slc],transparency=1)/255
26 dist = cmap(rescale(T)[slc])
27 msks = apply_ncolor(masks_cp[0][slc])
28

29 fig = plt.figure(figsize=[5]*2,frameon=False)
30 plt.imshow(np.hstack((flow,dist,msks)),interpolation='none')
31

32 plt.axis('off')
33 plt.show()
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1 %%capture
2 import ncolor
3 mask = masks_cp[0]
4 mask_nc = ncolor.label(mask,max_depth=20)
5

6 import napari
7 viewer = napari.view_labels(mask_nc);
8 viewer.dims.ndisplay = 3
9 viewer.camera.center = [s//2 for s in mask.shape]

10 viewer.camera.zoom=1
11 viewer.camera.angles=(10.90517458968619, -20.777067798396835, 58.04311170773853)
12 viewer.camera.perspective=0.0
13 viewer.camera.interactive=True
14

15 img = viewer.screenshot(size=(1000,1000),scale=1,canvas_only=True,flash=False)

1 plt.figure(figsize=(3,3),frameon=False)
2 plt.imshow(img)
3 plt.axis('off')
4 plt.show()

It appears that omni=True does allow 2D Cellpose models to work in 3D, but the prediction quality - worsened by
artifacts introduced by the compoisiting into 3D - is a limiting factor.

See settings for more information on algorithm parameters.
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CHAPTER

THIRTEEN

COMMAND LINE

Running just omnipose in the command line interface will launch the GUI . I have left training new models - done
exclusively via CLI - to its own page. The rest of this page refers to evaluation on the command line.

The command line allows batch processing and easy integration into downstream analysis pipelines like SuperSegger,
Morphometrics, MicrobeJ, CellTool, and many others (any program that takes images and labels in directories). See
Settings for an introduction to the settings. The command line interface accepts parameters from cellpose_omni.
models for evaluation and from cellpose_omni.io for finding files and saving output.

13.1 How to segment images using CLI

Note: omnipose or python -m omnipose is equivalent to python -m cellpose --omni, as our fork of Cellpose
still provides the main framework for running Omnipose.

Run omnipose [arguments] and specify the arguments as follows. For instance, to run on a folder with images
where cytoplasm is green and nucleus is blue and save the output as a png (using default diameter 30):

omnipose --dir <img_dir> --pretrained_model cyto –-chan 2 --chan2 3 --save_png

To do the same segmentation as in mono_channel_bact.ipynb, and save TIF masks (this turns off cp_output PNGs) to
folders along with flows and outlines, run:

omnipose --dir <img_dir> –-use_gpu --pretrained_model bact_phase_omni \
–-save_flows –-save_outlines --save_tif –-in_folders

Rescaling for the *bact* models is disabled by default, but setting a diameter with the --diameter flag will rescale
relative to 30px (e.g. --diameter 15 would double the image in x and y before running the network).

Warning: The path given to --dir must be an absolute path.
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13.2 Recommendations

There are some optional settings you should consider:

–-dir_above –-in_folders –-save_tifs –-save_flows –-save_outlines –-save_ncolor –-no_npy

The --no_npy command just gets rid of the .npy output that many users do not need. --save_tifs, as an alternative
to --save_pngs, does not save the four-panel plot output (that can take up a lot of space). Personally, I prefer to use
--save_outlines when I want a whole folder of easy-to-visualize segmentation results and --save_flows when
I want to debug them. These are also nice to have for making GIFs of cell growth, for example. --save_ncolor is
handy for exporting N-color masks that are easier to edit by hand - but it is the 1-channel version, no RGB colormap
applied (which is what you want for editing in Photoshop).

Most of all, --in_folders is something I always use so that these various outputs do not clutter up the image directory
(/image01.png, /image01_masks.tif, /image01_flows.tif. . . ) and instead dumps all the masks into a /masks
folder, flows into flows, N-color masks into /ncolor, outlines into /outlines, and so on. Without the --dir_above
command, these are inside the image directory. --dir_above will put those folders one directory above, parallel to
the image directory, which is what I like and what SuperSegger expects.

flow_threshold 0 is a very good idea if you have a lot of large images and do not need that cleanup step. Settings like
--mask_threshold 0.3 (0 is the default) can also be relevant. The GUI will automatically generate the parameters
you need to recapitulate your results in CLI (just in notebook formatting for now - you will need to format those
parameters according to these examples).

13.3 All options

You can print out the full list of features with omnipose -h. There are a lot of them, but with Omnipose we organized
them into categories. See CLI to browse a bit easier. As demonstrated above, input image arguments and output
arguments are the most relevant. See SuperSegger-Omnipose for an example of how to use these options to integrate
Omnipose as a segmentation backend.
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CHAPTER

FOURTEEN

API

This page exists to help users navigate the labyrinth of functions and classes that make up Omnipose.

14.1 Project structure

Omnipose is built on Cellpose, and functionally that means Cellpose actually imports Omnipose to replace many of
its operations with the Omnipose versions with omni=True. Omnipose was first packaged into the Cellpose repo
before I began making too many ND-generalizations (full rewrites) for the authors to maintain. Thus was birthed
my cellpose_omni fork, which I published to PyPi separately from Omnipose for some time. I later decided that
maintaining two packages for one project was overcomplicated for me and users (especially for installations from
the repo), so the latest version of cellpose_omni now lives here. cellpose_omni still gets installed as its own
subpackage when you install Omnipose. If you have issues migrating to the new version, make sure to pip uninstall
omnipose cellpose_omni before re-installing Omnipose. The install.py script simply runs pip install -e
.{extras} in the omnipose and cellpose directories.

If you encounter bugs with Omnipose, you can check the main Cellpose repo for related issues and also post them here.
I do my best to keep up with with bug fixes and features from the main branch, but it helps me out a lot if users bring
them to my attention. If there are any features or pull requests in Cellpose that you want to see in Omnipose ASAP,
please let me know.

14.2 Modules

14.2.1 omnipose.core

affinity_to_boundary(masks, affinity_graph, ...) Convert affinity graph to boundary map.
affinity_to_edges(affinity_graph, ...) Convert symmetric affinity graph to list of edge tuples

for connected components labeling.
affinity_to_masks(affinity_graph, ...[, ...]) Convert affinity graph to label matrix using connected

components.
batch_labels(masks, bd, T, mu, tyx, dim, ...)

boundary_to_affinity(masks, boundaries) This function converts boundary+interior labels to an
affinity graph.

boundary_to_masks(boundaries[, binary_mask, ...])

compute_masks(dP, dist[, affinity_graph, ...]) Compute masks using dynamics from dP, dist, and
boundary outputs.

continues on next page
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Table 1 – continued from previous page
concatenate_labels(masks, links, nsample)

diameters(masks[, dt, dist_threshold]) Calculate the mean cell diameter from a label matrix.
dist_to_diam(dt_pos, n) Convert positive distance field values to a mean diame-

ter.
div_rescale(dP, mask[, p]) Normalize the flow magnitude to rescaled 0-1 diver-

gence.
divergence(f[, sp]) Computes divergence of vector field
divergence_torch (y)

do_warp(A, M_inv, tyx[, offset, order, mode]) Wrapper function for affine transformations during aug-
mentation.

fill_holes_and_remove_small_masks(masks[,
...])

fill holes in masks (2D/3D) and discard masks smaller
than min_size (2D)

flow_error(maski, dP_net[, coords, ...]) error in flows from predicted masks vs flows predicted
by network run on image

follow_flows(dP, dist, inds[, niter, ...]) define pixels and run dynamics to recover masks in 2D
get_boundary(mu, mask[, bd, affinity_graph, ...]) One way to get boundaries by considering flow dot prod-

ucts.
get_contour(labels, affinity_graph[, ...]) Sort 2D boundaries into cyclic paths.
get_link_matrix(links, piece_masks, inds, ...)

get_links(masks, labels, bd[, connectivity])

get_masks(p, bd, dist, mask, inds[, ...]) Omnipose mask recontruction algorithm.
get_masks_cp(p[, iscell, rpad, flows, ...]) create masks using pixel convergence after running dy-

namics
get_neigh_inds(coords, shape, steps) For L pixels and S steps, find the neighboring pixel in-

dexes 0,1,...,L for each step.
get_niter(dists) Get number of iterations.
labels_to_flows(labels[, links, files, ...]) Convert labels (list of masks or flows) to flows for train-

ing model.
linker_label_to_links(maski, linker_label_list)

links_to_boundary(masks, links) Deprecated.
links_to_mask(masks, links) Convert linked masks to stitched masks.
loss(self, lbl, y) Loss function for Omnipose. :param lbl: transformed

labels in array [nimg x nchan x xy[0] x xy[1]] lbl[:,0]
cell masks lbl[:,1] thresholded mask layer lbl[:,2] bound-
ary field lbl[:,3] smooth distance field lbl[:,4] boundary-
emphasizing weights lbl[:,5:] flow components :type lbl:
ND-array, float :param y: network predictions, with di-
mension D, these are: y[:,:D] flow field components at
0,1,...,D-1 y[:,D] distance fields at D y[:,D+1] boundary
fields at D+1 :type y: ND-tensor, float.

masks_to_affinity(masks, coords, steps, ...) Convert label matrix to affinity graph.
masks_to_flows(masks[, affinity_graph, ...]) Convert masks to flows.
masks_to_flows_batch (batch[, links, device, ...]) Batch process flows.
masks_to_flows_torch (masks, affinity_graph) Convert ND masks to flows.
mode_filter(masks) super fast mode filter (compared to scipy, idk about PIL)

to clean up interpolated labels
continues on next page
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Table 1 – continued from previous page
most_frequent(neighbor_masks)

parametrize(steps, labs, unique_L, inds, ...) Parametrize 2D boundaries.
parametrize_contours(steps, labs, unique_L, ...) Helper function to sort 2D contours into cyclic paths.
random_crop_warp(img, Y, tyx, v1, v2, nchan, ...) This sub-fuction of random_rotate_and_resize() recur-

sively performs random cropping until a minimum num-
ber of cell pixels are found, then proceeds with augem-
ntations.

random_rotate_and_resize(X[, Y, ...]) augmentation by random rotation and resizing
remove_bad_flow_masks(masks, flows[, ...]) remove masks which have inconsistent flows
sigmoid(x) The sigmoid function.
split_spacetime(augmented_affinity, mask[, ...]) Split lineage labels into frame-by-frame labels and Cell

ID / spacetime labeling.
step_factor(t) Euler integration suppression factor.
steps_batch (p, dP, niter[, omni, suppress, ...]) Euler integration of pixel locations p subject to flow dP

for niter steps in N dimensions.

affinity_to_boundary

omnipose.core.affinity_to_boundary(masks, affinity_graph, coords)
Convert affinity graph to boundary map.

Internal hypervoxels are those that are fully connected to all their 3^D-1 neighbors, where D is the dimension.
Boundary hypervoxels are those that are connected to fewer than this number and at least 1 other hypervoxel.
Correct boundaries should have >=D connections, but the lower bound here is set to 1.

masks: ND array, int or binary
label matrix or binary foreground mask

affinity_graph: ND array, bool
hypervoxel affinity array, <3^D> by <number of foreground hypervoxels>

coords: tuple or ND array
coordinates of foreground hypervoxels, <dim>x<npix>

boundary

affinity_to_edges

omnipose.core.affinity_to_edges(affinity_graph, neigh_inds, step_inds, px_inds)
Convert symmetric affinity graph to list of edge tuples for connected components labeling.

affinity_to_masks

omnipose.core.affinity_to_masks(affinity_graph, neigh_inds, iscell, coords, cardinal=True,
exclude_interior=False, return_edges=False, verbose=False)

Convert affinity graph to label matrix using connected components.
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batch_labels

omnipose.core.batch_labels(masks, bd, T, mu, tyx, dim, nclasses, device, dist_bg=5)

boundary_to_affinity

omnipose.core.boundary_to_affinity(masks, boundaries)
This function converts boundary+interior labels to an affinity graph. Boundaries are taken to have label 1,2,...,N
and interior pixels have some value M>N. This format is the best way I have found to annotate self-contact cells.

boundary_to_masks

omnipose.core.boundary_to_masks(boundaries, binary_mask=None, min_size=9, dist=1.4142135623730951,
connectivity=1)

compute_masks

omnipose.core.compute_masks(dP, dist, affinity_graph=None, bd=None, p=None, coords=None, iscell=None,
niter=None, rescale=1.0, resize=None, mask_threshold=0.0,
diam_threshold=12.0, flow_threshold=0.4, interp=True, cluster=False,
boundary_seg=False, affinity_seg=False, do_3D=False, min_size=None,
max_size=None, hole_size=None, omni=True, calc_trace=False,
verbose=False, use_gpu=False, device=None, nclasses=2, dim=2, eps=None,
hdbscan=False, flow_factor=6, debug=False, override=False, suppress=None,
despur=True)

Compute masks using dynamics from dP, dist, and boundary outputs. Called in cellpose.models().

Parameters

• dP (float, ND array) -- flow field components (2D: 2 x Ly x Lx, 3D: 3 x Lz x Ly x Lx)

• dist (float, ND array) -- distance field (Ly x Lx)

• bd (float, ND array) -- boundary field

• p (float32, ND array) -- initial locations of each pixel before dynamics, size [axis x Ly
x Lx] or [axis x Lz x Ly x Lx].

• coords (int32, 2D array) -- non-zero pixels to run dynamics on [npixels x D]

• niter (int32) -- number of iterations of dynamics to run

• rescale (float (optional, default None)) -- resize factor for each image, if None,
set to 1.0

• resize (int, tuple) -- shape of array (alternative to rescaling)

• mask_threshold (float) -- all pixels with value above threshold kept for masks, decrease
to find more and larger masks

• flow_threshold (float) -- flow error threshold (all cells with errors below threshold are
kept) (not used for Cellpose3D)

• interp (bool) -- interpolate during dynamics

• cluster (bool) -- use sub-pixel DBSCAN clustering of pixel coordinates to find masks
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• do_3D (bool (optional, default False)) -- set to True to run 3D segmentation on
4D image input

• min_size (int (optional, default 15)) -- minimum number of pixels per mask, can
turn off with -1

• omni (bool) -- use omnipose mask recontruction features

• calc_trace (bool) -- calculate pixel traces and return as part of the flow

• verbose (bool) -- turn on additional output to logs for debugging

• use_gpu (bool) -- use GPU of flow_threshold>0 (computes flows from predicted masks on
GPU)

• device (torch device) -- what compute hardware to use to run the code (GPU VS CPU)

• nclasses -- number of output classes of the network (Omnipose=3,Cellpose=2)

• dim (int) -- dimensionality of data / model output

• eps (float) -- internal epsilon parameter for (H)DBSCAN

• hdbscan -- use better, but much SLOWER, hdbscan clustering algorithm (experimental)

• flow_factor -- multiple to increase flow magnitude (used in 3D only, experimental)

• debug -- option to return list of unique mask labels as a fourth output (for debugging only)

Returns

• mask (int, ND array) -- label matrix

• p (float32, ND array) -- final locations of each pixel after dynamics, size [axis x Ly x Lx] or
[axis x Lz x Ly x Lx].

• tr (float32, ND array) -- intermediate locations of each pixel during dynamics, size [axis x
niter x Ly x Lx] or [axis x niter x Lz x Ly x Lx]. For debugging/paper figures, very slow.

• bd (float32, ND array) -- boundary map

• augmented_affinity (float32, ND array) -- concatenated coordinates and affinity graph,
hence (d+1,3**d,npix)

concatenate_labels

omnipose.core.concatenate_labels(masks: ndarray, links: list, nsample: int)

diameters

omnipose.core.diameters(masks, dt=None, dist_threshold=0)
Calculate the mean cell diameter from a label matrix.

Parameters

• masks (ND array, float) -- label matrix 0,...,N

• dt (ND array, float) -- distance field

• dist_threshold (float) -- cutoff below which all values in dt are set to 0. Must be >=0.

Returns
diam -- a single number that corresponds to the average diameter of labeled regions in the image,
see dist_to_diam()
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Return type
float

dist_to_diam

omnipose.core.dist_to_diam(dt_pos, n)
Convert positive distance field values to a mean diameter.

Parameters

• dt_pos (1D array, float) -- array of positive distance field values

• n (int) -- dimension of volume. dt_pos is always 1D because only the positive values int he
distance field are passed in.

Returns
mean diameter -- a single number that corresponds to the diameter of the N-sphere when dt_pos
for a sphere is given to the function, holds constant for extending rods of uniform width, much
better than the diameter of a circle of equivalent area for estimating the short-axis dimensions of
objects

Return type
float

div_rescale

omnipose.core.div_rescale(dP, mask, p=1)
Normalize the flow magnitude to rescaled 0-1 divergence.

Parameters

• dP (float, ND array) -- flow field

• mask (int, ND array) -- label matrix

Returns
dP -- rescaled flow field

Return type
float, ND array

divergence

omnipose.core.divergence(f, sp=None)
Computes divergence of vector field

Parameters

• f (ND array, float) -- vector field components [Fx,Fy,Fz,...]

• sp (ND array, float) -- spacing between points in respecitve directions [spx, spy, spz,...]
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divergence_torch

omnipose.core.divergence_torch(y)

do_warp

omnipose.core.do_warp(A, M_inv, tyx, offset=0, order=1, mode='constant', **kwargs)
Wrapper function for affine transformations during augmentation. Uses scipy.ndimage.affine_transform().

Parameters

• A (NDarray, int or float) -- input image to be transformed

• M_inv (NDarray, float) -- inverse tranformation matrix

• order (int) -- interpolation order, 1 is equivalent to 'nearest',

fill_holes_and_remove_small_masks

omnipose.core.fill_holes_and_remove_small_masks(masks, min_size=None, max_size=None, hole_size=3,
dim=2)

fill holes in masks (2D/3D) and discard masks smaller than min_size (2D)

fill holes in each mask using scipy.ndimage.morphology.binary_fill_holes

Parameters

• masks (int, 2D or 3D array) -- labelled masks, 0=NO masks; 1,2,...=mask labels, size
[Ly x Lx] or [Lz x Ly x Lx]

• min_size (int (optional, default 3**dim)) -- minimum number of pixels per mask
(exclusive), can turn off with -1

• max_size (int (optional, default None)) -- maximum number of pixels per mask
(exclusive)

• hole_size (int (optional, default 3)) -- holes bigger than this are NOT filled

• dim (int (optional, default 2)) -- dimension of the masks

Returns
masks -- masks with holes filled and masks smaller than min_size removed, 0=NO masks;
1,2,...=mask labels, size [Ly x Lx] or [Lz x Ly x Lx]

Return type
int, 2D or 3D array

flow_error

omnipose.core.flow_error(maski, dP_net, coords=None, affinity_graph=None, use_gpu=False, device=None,
omni=True)

error in flows from predicted masks vs flows predicted by network run on image

This function serves to benchmark the quality of masks, it works as follows 1. The predicted masks are used to
create a flow diagram 2. The mask-flows are compared to the flows that the network predicted

If there is a discrepancy between the flows, it suggests that the mask is incorrect. Masks with flow_errors greater
than 0.4 are discarded by default. Setting can be changed in Cellpose.eval or CellposeModel.eval.
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Parameters

• maski (ND-array (int)) -- masks produced from running dynamics on dP_net, where
0=NO masks; 1,2... are mask labels

• dP_net (ND-array (float)) -- ND flows where dP_net.shape[1:] = maski.shape

Returns

• flow_errors (float array with length maski.max()) -- mean squared error between predicted
flows and flows from masks

• dP_masks (ND-array (float)) -- ND flows produced from the predicted masks

follow_flows

omnipose.core.follow_flows(dP, dist, inds, niter=None, interp=True, use_gpu=True, device=None,
omni=True, suppress=False, calc_trace=False, verbose=False)

define pixels and run dynamics to recover masks in 2D

Pixels are meshgrid. Only pixels with non-zero cell-probability are used (as defined by inds)

Parameters

• dP (float32, 3D or 4D array) -- flows [axis x Ly x Lx] or [axis x Lz x Ly x Lx]

• inds (int, ND array) -- initial indices of pixels for the Euler integration

• niter (int) -- number of iterations of dynamics to run

• interp (bool) -- interpolate during dynamics

• use_gpu (bool) -- use GPU to run interpolated dynamics (faster than CPU)

• omni (bool) -- flag to enable Omnipose suppressed Euler integration etc.

• calc_trace (bool) -- flag to store and retrun all pixel coordinates during Euler integration
(slow)

Returns

• p (float32, ND array) -- final locations of each pixel after dynamics

• inds (int, ND array) -- initial indices of pixels for the Euler integration [npixels x ndim]

• tr (float32, ND array) -- list of intermediate pixel coordinates for each step of the Euler
integration

get_boundary

omnipose.core.get_boundary(mu, mask, bd=None, affinity_graph=None, contour=False, use_gpu=False,
device=None, desprue=False)

One way to get boundaries by considering flow dot products. Will be deprecated.
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get_contour

omnipose.core.get_contour(labels, affinity_graph, coords=None, neighbors=None, cardinal_only=True)
Sort 2D boundaries into cyclic paths.

labels: 2D array, int
label matrix

affinity_graph: 2D array, bool
pixel affinity array, 9 by number of foreground pixels

get_link_matrix

omnipose.core.get_link_matrix(links, piece_masks, inds, idx, is_link)

get_links

omnipose.core.get_links(masks, labels, bd, connectivity=1)

get_masks

omnipose.core.get_masks(p, bd, dist, mask, inds, nclasses=2, cluster=False, diam_threshold=12.0, eps=None,
hdbscan=False, verbose=False)

Omnipose mask recontruction algorithm.

This function is called after dynamics are run. The final pixel coordinates are provided, and cell labels are
assigned to clusters found by labeling the pixel clusters after rounding the coordinates (snapping each pixel to
the grid and labeling the resulting binary mask) or by using DBSCAN or HDBSCAN for sub-pixel clustering.

Parameters

• p (float32, ND array) -- final locations of each pixel after dynamics

• bd (float, ND array) -- boundary field

• dist (float, ND array) -- distance field

• mask (bool, ND array) -- binary cell mask

• inds (int, ND array) -- initial indices of pixels for the Euler integration [npixels x ndim]

• nclasses (int) -- number of prediciton classes

• cluster (bool) -- use DBSCAN clustering instead of coordinate thresholding

• diam_threshold (float) -- mean diameter under which clustering will be turned on auto-
matically

• eps (float) -- internal espilon parameter for (H)DBSCAN

• hdbscan (bool) -- use better, but much SLOWER, hdbscan clustering algorithm

• verbose (bool) -- option to print more info to log file

Returns

• mask (int, ND array) -- label matrix

• labels (int, list) -- all unique labels
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get_masks_cp

omnipose.core.get_masks_cp(p, iscell=None, rpad=20, flows=None, use_gpu=False, device=None)
create masks using pixel convergence after running dynamics

Makes a histogram of final pixel locations p, initializes masks at peaks of histogram and extends the masks from
the peaks so that they include all pixels with more than 2 final pixels p. Discards masks with flow errors greater
than the threshold.

Parameters

• p (float32, 3D or 4D array) -- final locations of each pixel after dynamics, size [axis
x Ly x Lx] or [axis x Lz x Ly x Lx].

• iscell (bool, 2D or 3D array) -- if iscell is not None, set pixels that are iscell False to
stay in their original location.

• rpad (int (optional, default 20)) -- histogram edge padding

• flows (float, 3D or 4D array (optional, default None)) -- flows [axis x Ly x
Lx] or [axis x Lz x Ly x Lx]. If flows is not None, then masks with inconsistent flows are
removed using remove_bad_flow_masks.

Returns
M0 -- masks with inconsistent flow masks removed, 0=NO masks; 1,2,...=mask labels, size [Ly
x Lx] or [Lz x Ly x Lx]

Return type
int, 2D or 3D array

get_neigh_inds

omnipose.core.get_neigh_inds(coords, shape, steps)
For L pixels and S steps, find the neighboring pixel indexes 0,1,...,L for each step. Background index is -1.
Returns:

Parameters

• coords (tuple or ND array) -- coordinates of nonzero pixels, <dim>x<npix>

• shape (tuple or list, int) -- shape of the image array

• steps (ND array, int) -- list or array of ND steps to neighbors

Returns

• indexes (1D array) -- list of pixel indexes 0,1,...L-1

• neigh_inds (2D array) -- SxL array corresponding to affinity graph

• ind_matrix (ND array) -- indexes inserted into the ND image volume
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get_niter

omnipose.core.get_niter(dists)
Get number of iterations.

Parameters
dists (ND array, float) -- array of (nonnegative) distance field values

Returns
niter -- number of iterations empirically found to be the lower bound for convergence of the
distance field relaxation method

Return type
int

labels_to_flows

omnipose.core.labels_to_flows(labels, links=None, files=None, use_gpu=False, device=None, omni=True,
redo_flows=False, dim=2)

Convert labels (list of masks or flows) to flows for training model.

if files is not None, flows are saved to files to be reused

Parameters

• labels (list of ND-arrays) -- labels[k] can be 2D or 3D, if [3 x Ly x Lx] then it is
assumed that flows were precomputed. Otherwise labels[k][0] or labels[k] (if 2D) is used to
create flows.

• links (list of label links) -- These lists of label pairs define which labels are
"linked", i.e. should be treated as part of the same object. This is how Omnipose handles
internal/self-contact boundaries during training.

• files (list of strings) -- list of file names for the base images that are appended with
'_flows.tif' for saving.

• use_gpu (bool) -- flag to use GPU for speedup. Note that Omnipose fixes some bugs that
caused the Cellpose GPU implementation to have different behavior compared to the Cell-
pose CPU implementation.

• device (torch device) -- what compute hardware to use to run the code (GPU VS CPU)

• omni (bool) -- flag to generate Omnipose flows instead of Cellpose flows

• redo_flows (bool) -- flag to overwrite existing flows. This is necessary when changing
over from Cellpose to Omnipose, as the flows are very different.

• dim (int) -- integer representing the intrinsic dimensionality of the data. This allows users
to generate 3D flows for volumes. Some dependencies will need to be to be extended to allow
for 4D, but the image and label loading is generalized to ND.

Returns
flows -- flows[k][0] is labels[k], flows[k][1] is cell distance transform, flows[k][2:2+dim] are the
(T)YX flow components, and flows[k][-1] is heat distribution / smooth distance

Return type
list of [4 x Ly x Lx] arrays
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linker_label_to_links

omnipose.core.linker_label_to_links(maski, linker_label_list)

links_to_boundary

omnipose.core.links_to_boundary(masks, links)
Deprecated. Use masks_to_affinity instead.

links_to_mask

omnipose.core.links_to_mask(masks, links)
Convert linked masks to stitched masks.

loss

omnipose.core.loss(self, lbl, y)
Loss function for Omnipose. :param lbl: transformed labels in array [nimg x nchan x xy[0] x xy[1]]

lbl[:,0] cell masks lbl[:,1] thresholded mask layer lbl[:,2] boundary field lbl[:,3] smooth distance field
lbl[:,4] boundary-emphasizing weights lbl[:,5:] flow components

Parameters
y (ND-tensor, float) -- network predictions, with dimension D, these are: y[:,:D] flow field
components at 0,1,...,D-1 y[:,D] distance fields at D y[:,D+1] boundary fields at D+1

masks_to_affinity

omnipose.core.masks_to_affinity(masks, coords, steps, inds, idx, fact, sign, dim, links=None, edges=None,
dists=None, cutoff=1.4142135623730951)

Convert label matrix to affinity graph. Here the affinity graph is an NxM matrix, where N is the number of pos-
sible hypercube connections (3**dimension) and M is the number of foreground hypervoxels. Self-connections
are set to 0.

idx is the central index of the kernel, inds[0]. edges is a list of tuples (y1,y2,y3,...),(x1,x2,x3,...) etc. to which all
adjacent pixels should be connected concatenated masks should be paddedby 1 to make sure that doesn't cause
unextpected label merging dist can be used instead for edge connectivity

masks_to_flows

omnipose.core.masks_to_flows(masks, affinity_graph=None, dists=None, coords=None, links=None,
use_gpu=True, device=None, omni=True, dim=2, smooth=False,
normalize=False, n_iter=None, verbose=False)

Convert masks to flows.

First, we find the scalar field. In Omnipose, this is the distance field. In Cellpose, this is diffusion from center
pixel. Center of masks where diffusion starts is defined to be the closest pixel to the median of all pixels that is
inside the mask.

The flow components are then found as hthe gradient of the scalar field.
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Parameters

• masks (int, ND array) -- labeled masks, 0 = background, 1,2,...,N = mask labels

• dists (ND array, float) -- array of (nonnegative) distance field values

• affinity_graph (ND array, bool) -- hypervoxel affinity array, alternative to providing
overseg labels and links the most general way to compute flows, and can represent internal
boundaries

• links (list of label links) -- list of tuples used for treating label pairs as the same

• use_gpu (bool) -- flag to use GPU for speedup. Note that Omnipose fixes some bugs that
caused the Cellpose GPU implementation to have different behavior compared to the Cell-
pose CPU implementation.

• device (torch device) -- what compute hardware to use to run the code (GPU VS CPU)

• omni (bool) -- flag to generate Omnipose flows instead of Cellpose flows

• dim (int) -- dimensionality of image data

Returns

• mu (float, 3D or 4D array) -- flows in Y = mu[-2], flows in X = mu[-1]. if masks are 3D,
flows in Z = mu[0].

• mu_c (float, 2D or 3D array) -- for each pixel, the distance to the center of the mask in which
it resides

masks_to_flows_batch

omnipose.core.masks_to_flows_batch(batch, links=[None], device=device(type='cpu'), omni=True, dim=2,
smooth=False, normalize=False, affinity_field=False, initialize=False,
n_iter=None, verbose=False)

Batch process flows. This includes padding with relection to not have weird cutoff flows.

Parameters
mask_batch (list, NDarray) -- list of masks all of shape tyx

Return type
concatenated labels, links, etc. and slices to extract them

masks_to_flows_torch

omnipose.core.masks_to_flows_torch(masks, affinity_graph, coords=None, dists=None,
device=device(type='cpu'), omni=True, affinity_field=False,
smooth=False, normalize=False, n_iter=None, weight=1,
return_flows=True, edges=None, initialize=False, verbose=False)

Convert ND masks to flows.

Omnipose find distance field, Cellpose uses diffusion from center of mass.

Parameters

• masks (int, ND array) -- labelled masks, 0 = background, 1,2,...,N = mask labels

• dists (ND array, float) -- array of (nonnegative) distance field values

• device (torch device) -- what compute hardware to use to run the code (GPU VS CPU)
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• omni (bool) -- flag to generate Omnipose flows instead of Cellpose flows

• smooth (bool) -- use relaxation to smooth out distance and therby flow field

• n_iter (int) -- override number of iterations

Returns

• mu (float, 3D or 4D array) -- flows in Y = mu[-2], flows in X = mu[-1]. if masks are 3D,
flows in Z or T = mu[0].

• dist (float, 2D or 3D array) -- scalar field representing temperature distribution (Cellpose)
or the smooth distance field (Omnipose)

mode_filter

omnipose.core.mode_filter(masks)
super fast mode filter (compared to scipy, idk about PIL) to clean up interpolated labels

most_frequent

omnipose.core.most_frequent(neighbor_masks)

parametrize

omnipose.core.parametrize(steps, labs, unique_L, inds, ind_shift, values, step_ok)
Parametrize 2D boundaries.

parametrize_contours

omnipose.core.parametrize_contours(steps, labs, unique_L, neigh_inds, step_ok, csum)

Helper function to sort 2D contours into cyclic paths. See get_contour().

random_crop_warp

omnipose.core.random_crop_warp(img, Y, tyx, v1, v2, nchan, rescale, scale_range, gamma_range, do_flip, ind,
do_labels=True, depth=0)

This sub-fuction of random_rotate_and_resize() recursively performs random cropping until a minimum number
of cell pixels are found, then proceeds with augemntations.

Parameters

• X (float, list of ND arrays) -- image array of size [nchan x Lt x Ly x Lx] or [Lt x Ly
x Lx]

• Y (float, ND array) -- image label array of size [nlabels x Lt x Ly x Lx] or [Lt x Ly x
Lx].. The 1st channel of Y is always nearest-neighbor interpolated (assumed to be masks or
0-1 representation). If Y.shape[0]==3, then the labels are assumed to be [cell probability, T
flow, Y flow, X flow].

• tyx (int, tuple) -- size of transformed images to return, e.g. (Ly,Lx) or (Lt,Ly,Lx)

• nchan (int) -- number of channels the images have
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• rescale (float, array or list) -- how much to resize images by before performing
augmentations

• scale_range (float) -- Range of resizing of images for augmentation. Images are resized
by (1-scale_range/2) + scale_range * np.random.rand()

• gamma_range (float, list) -- images are gamma-adjusted im**gamma for gamma in
[low,high]

• do_flip (bool (optional, default True)) -- whether or not to flip images horizon-
tally

• ind (int) -- image index (for debugging)

• dist_bg (float) -- nonegative value X for assigning -X to where distance=0 (deprecated,
now adapts to field values)

• depth (int) -- how many time this function has been called on an image

Returns

• imgi (float, ND array) -- transformed images in array [nchan x xy[0] x xy[1]]

• lbl (float, ND array) -- transformed labels in array [nchan x xy[0] x xy[1]]

• scale (float, 1D array) -- scalar by which the image was resized

random_rotate_and_resize

omnipose.core.random_rotate_and_resize(X, Y=None, scale_range=1.0, gamma_range=[0.75, 2.5],
tyx=(224, 224), do_flip=True, rescale=None, inds=None,
nchan=1)

augmentation by random rotation and resizing

X and Y are lists or arrays of length nimg, with channels x Lt x Ly x Lx (channels optional, Lt only in 3D)

Parameters

• X (float, list of ND arrays) -- list of image arrays of size [nchan x Lt x Ly x Lx] or
[Lt x Ly x Lx]

• Y (float, list of ND arrays) -- list of image labels of size [nlabels x Lt x Ly x Lx] or
[Lt x Ly x Lx]. The 1st channel of Y is always nearest-neighbor interpolated (assumed to be
masks or 0-1 representation). If Y.shape[0]==3, then the labels are assumed to be [distance,
T flow, Y flow, X flow].

• links (list of label links) -- lists of label pairs linking parts of multi-label object
together this is how omnipose gets around boudary artifacts druing image warps

• scale_range (float (optional, default 1.0)) -- Range of resizing of images for
augmentation. Images are resized by (1-scale_range/2) + scale_range * np.random.rand()

• gamma_range (float, list) -- images are gamma-adjusted im**gamma for gamma in
[low,high]

• tyx (int, tuple) -- size of transformed images to return, e.g. (Ly,Lx) or (Lt,Ly,Lx)

• do_flip (bool (optional, default True)) -- whether or not to flip images horizon-
tally

• rescale (float, array or list) -- how much to resize images by before performing
augmentations
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• inds (int, list) -- image indices (for debugging)

• nchan (int) -- number of channels the images have

Returns

• imgi (float, ND array) -- transformed images in array [nimg x nchan x xy[0] x xy[1]]

• lbl (float, ND array) -- transformed labels in array [nimg x nchan x xy[0] x xy[1]]

• scale (float, 1D array) -- scalar(s) by which each image was resized

remove_bad_flow_masks

omnipose.core.remove_bad_flow_masks(masks, flows, coords=None, affinity_graph=None, threshold=0.4,
use_gpu=False, device=None, omni=True)

remove masks which have inconsistent flows

Uses metrics.flow_error to compute flows from predicted masks and compare flows to predicted flows from
network. Discards masks with flow errors greater than the threshold.

Parameters

• masks (int, 2D or 3D array) -- labelled masks, 0=NO masks; 1,2,...=mask labels, size
[Ly x Lx] or [Lz x Ly x Lx]

• flows (float, 3D or 4D array) -- flows [axis x Ly x Lx] or [axis x Lz x Ly x Lx]

• threshold (float) -- masks with flow error greater than threshold are discarded

Returns
masks -- masks with inconsistent flow masks removed, 0=NO masks; 1,2,...=mask labels, size
[Ly x Lx] or [Lz x Ly x Lx]

Return type
int, 2D or 3D array

sigmoid

omnipose.core.sigmoid(x)
The sigmoid function.

split_spacetime

omnipose.core.split_spacetime(augmented_affinity, mask, verbose=False)
Split lineage labels into frame-by-frame labels and Cell ID / spacetime labeling.
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step_factor

omnipose.core.step_factor(t)
Euler integration suppression factor.

Conveneient wrapper function allowed me to test out several supression factors.

Parameters
t (int) -- time step

steps_batch

omnipose.core.steps_batch(p, dP, niter, omni=True, suppress=True, interp=True, calc_trace=False,
calc_bd=False, verbose=False)

Euler integration of pixel locations p subject to flow dP for niter steps in N dimensions.

Parameters

• p (float32, tensor) -- pixel locations [axis x Lz x Ly x Lx] (start at initial meshgrid)

• dP (float32, ND array) -- flows [axis x Lz x Ly x Lx]

• niter (int32) -- number of iterations of dynamics to run

Returns
p -- final locations of each pixel after dynamics

Return type
float32, ND array

14.2.2 omnipose.utils

add_gaussian_noise(image[, mean, var])

add_poisson_noise(image)

apply_gaussian_blur(image, kernel_size, sigma) Applies a Gaussian blur to the image.
apply_shifts(moving_images, shifts)

auto_chunked_quantile(tensor, q)

average_tiles_ND(y, subs, shape) average results of network over tiles
bbox_to_slice(bbox, shape[, pad, im_pad]) return the tuple of slices for cropping an image based

on the skimage.measure bounding box optional padding
allows for the bounding box to be expanded, but not out-
side the original image dimensions

border_indices(tyx) Return flat indices of border values in ND.
clean_boundary(labels[, boundary_thickness, ...]) Delete boundary masks below a given size threshold

within a certain distance from the boundary.
correct_illumination(img[, sigma])

crop_bbox(mask[, pad, iterations, im_pad, ...]) Take a label matrix and return a list of bounding boxes
identifying clusters of labels.

continues on next page
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Table 2 – continued from previous page
cross_reg(imstack[, upsample_factor, order, ...]) Find the transformation matrices for all images in a time

series to align to the beginning frame.
cubestats(n) Gets the number of m-dimensional hypercubes con-

nected to the n-cube, including itself.
curve_filter(im[, filterWidth]) curveFilter : calculates the curvatures of an image.
extract_skeleton(distance_field)

find_files(directory, suffix[, exclude_suffixes])

find_nonzero_runs(a)

findbetween(s[, string1, string2]) Find text between string1 and string2.
gaussian_kernel(size, sigma[, device]) Creates a 2D Gaussian kernel with mean 0.
generate_slices(image_shape, crop_size) Generate slices for cropping an image into crops of size

crop_size.
get_boundary(mask) ND binary mask boundary using mahotas.
get_edge_masks(labels, dists) Finds and returns masks that are largely cut off by the

edge of the image.
get_flip(idx)

get_module(x)

get_neigh_inds(neighbors, coords, shape[, ...]) For L pixels and S steps, find the neighboring pixel in-
dexes 0,1,...,L for each step.

get_neighbors(coords, steps, dim, shape[, ...]) Get the coordinates of all neighbor pixels.
get_neighbors_torch (input, steps) This version not yet used/tested.
get_spruepoints(bw)

get_steps(dim) Get a symmetrical list of all 3**N points in a hypercube
represented by a list of all possible sequences of -1, 0,
and 1 in ND.

getname(path[, prefix, suffix, padding]) Extract the file name.
hysteresis_threshold(image, low, high) Pytorch implementation of skim-

age.filters.apply_hysteresis_threshold().
is_integer(var)

kernel_setup(dim) Get relevant kernel information for the hypercube of in-
terest.

load_nested_list(file_path) Helper function to load affinity graphs.
localnormalize(im[, sigma1, sigma2])

localnormalize_GPU(im[, sigma1, sigma2])

make_tiles_ND(imgi[, bsize, augment, ...]) make tiles of image to run at test-time
make_unique(masks) Relabel stack of label matrices such that there is no re-

peated label across slices.
mask_outline_overlay(img, masks, outlines[, ...]) Apply a color overlay to a grayscale image based on a

label matrix.
mono_mask_bd(masks, outlines[, color, a])

continues on next page
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Table 2 – continued from previous page
moving_average(x, w)

normalize99(Y[, lower, upper, ...]) normalize array/tensor so 0.0 is 0.01st percentile and 1.0
is 99.99th percentile Upper and lower percentile ranges
configurable.

normalize_field(mu[, use_torch, cutoff]) normalize all nonzero field vectors to magnitude 1
normalize_image(im, mask[, target, ...]) Normalize image by rescaling from 0 to 1 and then ad-

justing gamma to bring average background to specified
value (0.5 by default).

normalize_stack(vol, mask[, bg, ...]) Adjust image stacks so that background is (1) consistent
in brightness and (2) brought to an even average via se-
mantic gamma normalization.

phase_cross_correlation_GPU(image_stack[, ...])

phase_cross_correlation_GPU_old(image_stack)

ravel_index(b, shp)

remap_pairs(pairs, replacements)

rescale(T[, floor, ceiling, exclude_dims]) Rescale data between 0 and 1.
rotate(V, theta[, order, output_shape, center])

safe_divide(num, den[, cutoff]) Division ignoring zeros and NaNs in the denominator.
save_nested_list(file_path, nested_list) Helper function to save affinity graphs.
shift_stack(imstack, shift_vectors[, order, ...]) Shift each time slice of imstack according to list of nD

shifts.
shifts_to_slice(shifts, shape) Find the minimal crop box from time lapse registration

shifts.
steps_to_indices(steps) Get indices of the hupercubes sharing m-faces on the

central n-cube.
subsample_affinity(augmented_affinity, slc, mask) Helper function to subsample an affinity graph according

to an image crop slice and a foreground selection mask.
thin_skeleton(image)

to_16_bit(im) Rescale image [0,2^16-1] and then cast to uint16.
to_8_bit(im) Rescale image [0,2^8-1] and then cast to uint8.
torch_norm(a[, dim, keepdim]) Wrapper for torch.linalg.norm to handle ARM architec-

ture.
unaugment_tiles_ND(y, inds[, unet]) reverse test-time augmentations for averaging
unravel_index(index, shape)
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add_gaussian_noise

omnipose.utils.add_gaussian_noise(image, mean=0, var=0.01)

add_poisson_noise

omnipose.utils.add_poisson_noise(image)

apply_gaussian_blur

omnipose.utils.apply_gaussian_blur(image, kernel_size, sigma, device=device(type='cuda'))
Applies a Gaussian blur to the image.

Parameters

• image (torch.Tensor) -- The image to blur.

• kernel_size (int) -- The size of the Gaussian kernel.

• sigma (float) -- The standard deviation of the Gaussian distribution.

Returns
The blurred image.

Return type
torch.Tensor

apply_shifts

omnipose.utils.apply_shifts(moving_images, shifts)

auto_chunked_quantile

omnipose.utils.auto_chunked_quantile(tensor, q)

average_tiles_ND

omnipose.utils.average_tiles_ND(y, subs, shape)
average results of network over tiles

Parameters

• y (float, [ntiles x nclasses x bsize x bsize]) -- output of cellpose network for
each tile

• subs (list) -- list of slices for each subtile

• shape (int, list or tuple) -- shape of pre-tiled image (may be larger than original
image if image size is less than bsize)

Returns
yf -- network output averaged over tiles

Return type
float32, [nclasses x Ly x Lx]
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bbox_to_slice

omnipose.utils.bbox_to_slice(bbox, shape, pad=0, im_pad=0)
return the tuple of slices for cropping an image based on the skimage.measure bounding box optional padding
allows for the bounding box to be expanded, but not outside the original image dimensions

Parameters

• bbox (ndarray, float) -- input bounding box, e.g. [y0,x0,y1,x1]

• shape (array, tuple, or list, int) -- shape of corresponding array to be sliced

• pad (array, tuple, or list, int) -- padding to be applied to each axis of the bound-
ing box can be a common padding (5 means 5 on every side) or a list of each axis padding
([3,4] means 3 on y and 4 on x). N-volume requires an N-tuple.

• im_pad (int) -- region around the edges to avoid (pull back coordinate limits)

Return type
tuple of slices

border_indices

omnipose.utils.border_indices(tyx)
Return flat indices of border values in ND. Use via A.flat[border_indices].

clean_boundary

omnipose.utils.clean_boundary(labels, boundary_thickness=3, area_thresh=30, cutoff=0.5)
Delete boundary masks below a given size threshold within a certain distance from the boundary.

Parameters

• boundary_thickness (int) -- labels within a stripe of this thickness along the boundary
will be candidates for removal.

• area_thresh (int) -- labels with area below this value will be removed.

• cutoff (float) -- Fraction from 0 to 1 of the overlap with the boundary before the mask is
removed. Default 0.5. Set to 0 if you want any mask touching the boundary to be removed.

Return type
label matrix with small edge labels removed.

correct_illumination

omnipose.utils.correct_illumination(img, sigma=5)
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crop_bbox

omnipose.utils.crop_bbox(mask, pad=10, iterations=3, im_pad=0, area_cutoff=0, max_dim=inf,
get_biggest=False, binary=False)

Take a label matrix and return a list of bounding boxes identifying clusters of labels.

Parameters

• mask (matrix of integer labels) --

• pad (amount of space in pixels to add around the label (does not
extend beyond image edges, will shrink for consistency)) --

• iterations (number of dilation iterations to merge labels separated by
this number of pixel or less) --

• im_pad (amount of space to subtract off the label matrix edges) --

• area_cutoff (label clusters below this area in square pixels will be
ignored) --

• max_dim (if a cluster is above this cutoff, quit and return the
original image bounding box) --

Returns
slices

Return type
list of bounding box slices with padding

cross_reg

omnipose.utils.cross_reg(imstack, upsample_factor=100, order=1, normalization=None, reverse=True,
localnorm=True)

Find the transformation matrices for all images in a time series to align to the beginning frame.

cubestats

omnipose.utils.cubestats(n)
Gets the number of m-dimensional hypercubes connected to the n-cube, including itself.

Parameters
n (int) -- dimension of hypercube

Returns

• List whose length tells us how many hypercube types there are (point/edge/pixel/voxel...)

• connected to the central hypercube and whose entries denote many there in each group.

• E.g., a square would be n=2, so cubestats returns [4, 4, 1] for four points (m=0),

• four edges (m=1), and one face (the original square,m=n=2).
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curve_filter

omnipose.utils.curve_filter(im, filterWidth=1.5)
curveFilter : calculates the curvatures of an image.

INPUT :
im : image to be filtered filterWidth : filter width

OUTPUT :
M_ : Mean curvature of the image without negative values G_ : Gaussian curvature of the image
without negative values C1_ : Principal curvature 1 of the image without negative values C2_ :
Principal curvature 2 of the image without negative values M : Mean curvature of the ima ge G :
Gaussian curvature of the image C1 : Principal curvature 1 of the image C2 : Principal curvature
2 of the image im_xx : del^2 x / del x^2 im_yy : del^2 x / del y^2 im_xy : del^2 x / del x del y

extract_skeleton

omnipose.utils.extract_skeleton(distance_field)

find_files

omnipose.utils.find_files(directory, suffix, exclude_suffixes=[])

find_nonzero_runs

omnipose.utils.find_nonzero_runs(a)

findbetween

omnipose.utils.findbetween(s, string1='[', string2=']')
Find text between string1 and string2.

gaussian_kernel

omnipose.utils.gaussian_kernel(size: int, sigma: float, device=device(type='cuda'))
Creates a 2D Gaussian kernel with mean 0.

Parameters

• size (int) -- The size of the kernel. Should be an odd number.

• sigma (float) -- The standard deviation of the Gaussian distribution.

Returns
The Gaussian kernel.

Return type
torch.Tensor
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generate_slices

omnipose.utils.generate_slices(image_shape, crop_size)
Generate slices for cropping an image into crops of size crop_size.

get_boundary

omnipose.utils.get_boundary(mask)
ND binary mask boundary using mahotas.

Parameters
mask (ND array, bool) -- binary mask

Return type
Binary boundary map

get_edge_masks

omnipose.utils.get_edge_masks(labels, dists)
Finds and returns masks that are largely cut off by the edge of the image.

This function loops over all masks touching the image boundary and compares the maximum value of the distance
field along the boundary to the top quartile of distance within the mask. Regions whose edges just skim the image
edge will not be classified as an "edge mask" by this criteria, whereas masks cut off in their center (where distance
is high) will be returned as part of this output.

Parameters

• labels (ND array, int) -- label matrix

• dists (ND array, float) -- distance field (calculated with reflection padding of labels)

Returns
clean_labels -- label matrix of all cells qualifying as 'edge masks'

Return type
ND array, int

get_flip

omnipose.utils.get_flip(idx)

get_module

omnipose.utils.get_module(x)

86 Chapter 14. API



omnipose, Release 1.0.6-26-g260e4d3

get_neigh_inds

omnipose.utils.get_neigh_inds(neighbors, coords, shape, background_reflect=False)
For L pixels and S steps, find the neighboring pixel indexes 0,1,...,L for each step. Background index is -1.
Returns:

Parameters

• coords (tuple, int) -- coordinates of nonzero pixels, <dim>x<npix>

• shape (tuple, int) -- shape of the image array

Returns

• indexes (1D array) -- list of pixel indexes 0,1,...L-1

• neigh_inds (2D array) -- SxL array corresponding to affinity graph

• ind_matrix (ND array) -- indexes inserted into the ND image volume

get_neighbors

omnipose.utils.get_neighbors(coords, steps, dim, shape, edges=None, pad=0)
Get the coordinates of all neighbor pixels. Coordinates of pixels that are out-of-bounds get clipped.

get_neighbors_torch

omnipose.utils.get_neighbors_torch(input, steps)
This version not yet used/tested.

get_spruepoints

omnipose.utils.get_spruepoints(bw)

get_steps

omnipose.utils.get_steps(dim)

Get a symmetrical list of all 3**N points in a hypercube represented by a list of all possible sequences of -1, 0,
and 1 in ND.

1D: [[-1],[0],[1]] 2D: [[-1, -1],

[-1, 0], [-1, 1], [ 0, -1], [ 0, 0], [ 0, 1], [ 1, -1], [ 1, 0], [ 1, 1]]

The opposite pixel at index i is always found at index -(i+1). The number of possible face, edge, vertex, etc.
connections grows exponentially with dimension: 3 steps in 1D, 9 steps in 3D, 3**N in ND.
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getname

omnipose.utils.getname(path, prefix='', suffix='', padding=0)
Extract the file name.

hysteresis_threshold

omnipose.utils.hysteresis_threshold(image, low, high)
Pytorch implementation of skimage.filters.apply_hysteresis_threshold(). Discprepencies occur for very high
thresholds/thin objects.

is_integer

omnipose.utils.is_integer(var)

kernel_setup

omnipose.utils.kernel_setup(dim)

Get relevant kernel information for the hypercube of interest. Calls get_steps(), steps_to_indices().

Parameters
dim (int) -- dimension (usually 2 or 3, but can be any positive integer)

Returns

• steps (ndarray, int) -- list of steps to each kernal point see get_steps()

• idx (int) -- index of the central point within the step list this is always (3**dim)//2

• inds (ndarray, int) -- list of kernel points sorted by type see steps_to_indices()

• fact (float) -- list of face/edge/vertex/... distances see steps_to_indices()

• sign (1D array, int) -- signature distinguishing each kind of m-face via the number of steps
see steps_to_indices()

load_nested_list

omnipose.utils.load_nested_list(file_path)
Helper function to load affinity graphs.

localnormalize

omnipose.utils.localnormalize(im, sigma1=2, sigma2=20)
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localnormalize_GPU

omnipose.utils.localnormalize_GPU(im, sigma1=2, sigma2=20)

make_tiles_ND

omnipose.utils.make_tiles_ND(imgi, bsize=224, augment=False, tile_overlap=0.1, normalize=True,
return_tiles=True)

make tiles of image to run at test-time

if augmented, tiles are flipped and tile_overlap=2.

• original

• flipped vertically

• flipped horizontally

• flipped vertically and horizontally

Parameters

• imgi (float32) -- array that's nchan x Ly x Lx

• bsize (float (optional, default 224)) -- size of tiles

• augment (bool (optional, default False)) -- flip tiles and set tile_overlap=2.

• tile_overlap (float (optional, default 0.1)) -- fraction of overlap of tiles

Returns

• IMG (float32) -- tensor of shape ntiles,nchan,bsize,bsize

• subs (list) -- list of slices for each subtile

• shape (tuple) -- shape of original image

make_unique

omnipose.utils.make_unique(masks)
Relabel stack of label matrices such that there is no repeated label across slices.

mask_outline_overlay

omnipose.utils.mask_outline_overlay(img, masks, outlines, mono=None)
Apply a color overlay to a grayscale image based on a label matrix. mono is a single color to use. Otherwise, N
sinebow colors are used.
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mono_mask_bd

omnipose.utils.mono_mask_bd(masks, outlines, color=[1, 0, 0], a=0.25)

moving_average

omnipose.utils.moving_average(x, w)

normalize99

omnipose.utils.normalize99(Y, lower=0.01, upper=99.99, contrast_limits=None, dim=None)
normalize array/tensor so 0.0 is 0.01st percentile and 1.0 is 99.99th percentile Upper and lower percentile ranges
configurable.

Parameters

• Y (ndarray/tensor, float) -- Input array/tensor.

• upper (float) -- upper percentile above which pixels are sent to 1.0

• lower (float) -- lower percentile below which pixels are sent to 0.0

• contrast_limits (list, float (optional, override computation)) -- list of
two floats, lower and upper contrast limits

Return type
normalized array/tensor with a minimum of 0 and maximum of 1

normalize_field

omnipose.utils.normalize_field(mu, use_torch=False, cutoff=0)
normalize all nonzero field vectors to magnitude 1

Parameters
mu (ndarray, float) -- Component array of lenth N by L1 by L2 by ... by LN.

Return type
normalized component array of identical size.

normalize_image

omnipose.utils.normalize_image(im, mask, target=0.5, foreground=False, iterations=1, scale=1,
channel_axis=0, per_channel=True)

Normalize image by rescaling from 0 to 1 and then adjusting gamma to bring average background to specified
value (0.5 by default).

Parameters

• im (ndarray, float) -- input image or volume

• mask (ndarray, int or bool) -- input labels or foreground mask

• target (float) -- target background/foreground value in the range 0-1

• channel_axis (int) -- the axis that contains the channels
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Return type
gamma-normalized array with a minimum of 0 and maximum of 1

normalize_stack

omnipose.utils.normalize_stack(vol, mask, bg=0.5, bright_foreground=None, subtractive=False,
iterations=1, equalize_foreground=1, quantiles=[0.01, 0.99])

Adjust image stacks so that background is (1) consistent in brightness and (2) brought to an even average via
semantic gamma normalization.

phase_cross_correlation_GPU

omnipose.utils.phase_cross_correlation_GPU(image_stack, upsample_factor=10, normalization=None)

phase_cross_correlation_GPU_old

omnipose.utils.phase_cross_correlation_GPU_old(image_stack, target_index=None, upsample_factor=10,
reverse=False, normalize=False)

ravel_index

omnipose.utils.ravel_index(b, shp)

remap_pairs

omnipose.utils.remap_pairs(pairs, replacements)

rescale

omnipose.utils.rescale(T, floor=None, ceiling=None, exclude_dims=None)
Rescale data between 0 and 1. exclude_dims is the axis or axes that will remain.

rotate

omnipose.utils.rotate(V, theta, order=1, output_shape=None, center=None)

safe_divide

omnipose.utils.safe_divide(num, den, cutoff=0)
Division ignoring zeros and NaNs in the denominator.
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save_nested_list

omnipose.utils.save_nested_list(file_path, nested_list)
Helper function to save affinity graphs.

shift_stack

omnipose.utils.shift_stack(imstack, shift_vectors, order=1, cval=None, prefilter=True)
Shift each time slice of imstack according to list of nD shifts.

shifts_to_slice

omnipose.utils.shifts_to_slice(shifts, shape)
Find the minimal crop box from time lapse registration shifts.

steps_to_indices

omnipose.utils.steps_to_indices(steps)
Get indices of the hupercubes sharing m-faces on the central n-cube. These are sorted by the connectivity (by
center, face, edge, vertex, ...). I.e., the central point index is first, followed by cardinal directions, ordinals, and
so on.

subsample_affinity

omnipose.utils.subsample_affinity(augmented_affinity, slc, mask)
Helper function to subsample an affinity graph according to an image crop slice and a foreground selection mask.

Parameters

• augmented_affinity (NDarray, int64) -- Stacked neighbor coordinate array and affin-
ity graph. For dimension d, augmented_affinity[:d] are the neighbor coordinates of shape
(d,3**d,npix) and augmented_affinity[d] is the affinity graph of shape (3**d,npix).

• slc (tuple, slice) -- tuple of slices along each dimension defining the crop window

• mask (NDarray, bool) -- foreground selection mask, in the image space of the original
graph (i.e., not already sliced)

Return type
Augmented affinity graph corresponding to the cropped/masked region.

thin_skeleton

omnipose.utils.thin_skeleton(image)
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to_16_bit

omnipose.utils.to_16_bit(im)

Rescale image [0,2^16-1] and then cast to uint16.

to_8_bit

omnipose.utils.to_8_bit(im)

Rescale image [0,2^8-1] and then cast to uint8.

torch_norm

omnipose.utils.torch_norm(a, dim=0, keepdim=False)
Wrapper for torch.linalg.norm to handle ARM architecture.

unaugment_tiles_ND

omnipose.utils.unaugment_tiles_ND(y, inds, unet=False)
reverse test-time augmentations for averaging

Parameters

• y (float32) -- array of shape (ntiles, nchan, *DIMS) where nchan = (*DP,distance) (and
boundary if nlasses=3)

• unet (bool (optional, False)) -- whether or not unet output or cellpose output

Returns
y

Return type
float32

unravel_index

omnipose.utils.unravel_index(index, shape)
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14.2.3 omnipose.plot

apply_ncolor(masks[, offset, cmap, ...])

color_from_RGB(im, rgb, m[, bd, mode, ...])

colored_line(x, y, ax[, z, line_width, MAP])

colored_line_segments(xs, ys[, zs, color, ...])

colorize(im[, colors, color_weights, ...])

colorize_GPU(im[, colors, color_weights, ...])

create_colormap(image, labels) Create a colormap based on the average color of each
label in the image.

custom_new_gc(self)

faded_segment_resample(xs, ys[, zs, color, ...])

image_grid(images[, column_titles, ...]) Display a grid of images with uniform spacing.
imshow(imgs[, figsize, ax, hold, titles, ...])

plot_color_swatches(colors[, figsize, dpi])

plot_edges(shape, affinity_graph, neighbors, ...)

rgb_flow(dP[, transparency, mask, norm, device]) Meant for stacks of dP, unsqueeze if using on a single
plane.

segmented_resample(xs, ys[, zs, color, ...])

sinebow(N[, bg_color, offset]) Generate a color dictionary for use in visualizing N-
colored labels.

truncate_colormap(cmap[, minval, maxval, n])

apply_ncolor

omnipose.plot.apply_ncolor(masks, offset=0, cmap=None, max_depth=20, expand=True)

color_from_RGB

omnipose.plot.color_from_RGB(im, rgb, m, bd=None, mode='inner', connectivity=2)
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colored_line

omnipose.plot.colored_line(x, y, ax, z=None, line_width=1, MAP='jet')

colored_line_segments

omnipose.plot.colored_line_segments(xs, ys, zs=None, color='k', mid_colors=False)

colorize

omnipose.plot.colorize(im, colors=None, color_weights=None, offset=0, channel_axis=- 1)

colorize_GPU

omnipose.plot.colorize_GPU(im, colors=None, color_weights=None, offset=0, channel_axis=- 1)

create_colormap

omnipose.plot.create_colormap(image, labels)
Create a colormap based on the average color of each label in the image.

Parameters

• image (ndarray) -- An RGB image.

• labels (ndarray) -- A 2D array of labels corresponding to the image.

Returns
colormap -- A colormap where each row is the RGB color for the corresponding label.

Return type
ndarray

custom_new_gc

omnipose.plot.custom_new_gc(self )

faded_segment_resample

omnipose.plot.faded_segment_resample(xs, ys, zs=None, color='k', fade_len=20, n_resample=100,
direction='Head')
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image_grid

omnipose.plot.image_grid(images, column_titles=None, row_titles=None, plot_labels=None, xticks=[],
yticks=[], outline=False, outline_color=[0.5, 0.5, 0.5], padding=0.05, fontsize=10,
fontcolor=[0.5, 0.5, 0.5], fig_scale=6, dpi=300, order='ij', lpad=0.05,
lpos='top_middle', **kwargs)

Display a grid of images with uniform spacing. Accepts a neested list of images, with each sublist having cosnsi-
tent YXC diemnsions.

imshow

omnipose.plot.imshow(imgs, figsize=2, ax=None, hold=False, titles=None, title_size=None, spacing=0.05,
textcolor=[0.5, 0.5, 0.5], dpi=300, **kwargs)

plot_color_swatches

omnipose.plot.plot_color_swatches(colors, figsize=0.5, dpi=100)

plot_edges

omnipose.plot.plot_edges(shape, affinity_graph, neighbors, coords, figsize=1, fig=None, ax=None,
extent=None, slc=None, pic=None, edgecol=[0.75, 0.75, 0.75, 0.5], linewidth=0.15,
step_inds=None, cmap='inferno', origin='lower', bounds=None)

rgb_flow

omnipose.plot.rgb_flow(dP, transparency=True, mask=None, norm=True, device=device(type='cpu'))
Meant for stacks of dP, unsqueeze if using on a single plane.

segmented_resample

omnipose.plot.segmented_resample(xs, ys, zs=None, color='k', n_resample=100, mid_colors=False)

sinebow

omnipose.plot.sinebow(N, bg_color=[0, 0, 0, 0], offset=0)
Generate a color dictionary for use in visualizing N-colored labels. Background color defaults to transparent
black.

Parameters

• N (int) -- number of distinct colors to generate (excluding background)

• bg_color (ndarray, list, or tuple of length 4) -- RGBA values specifying the
background color at the front of the dictionary.

Returns
Dictionary with entries {int

Return type
RGBA array} to map integer labels to RGBA colors.
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truncate_colormap

omnipose.plot.truncate_colormap(cmap, minval=0.0, maxval=1.0, n=100)

14.2.4 cellpose_omni.models

ARM bool(x) -> bool
BD_MODEL_NAMES Built-in mutable sequence.
C1_BD_MODELS Built-in mutable sequence.
C1_MODELS Built-in mutable sequence.
C2_BD_MODELS Built-in mutable sequence.
C2_MODELS Built-in mutable sequence.
C2_MODEL_NAMES Built-in mutable sequence.
CP_MODELS Built-in mutable sequence.
Cellpose([gpu, model_type, net_avg, device, ...]) main model which combines SizeModel and Cellpose-

Model
CellposeModel([gpu, pretrained_model, ...])

param gpu
whether or not to save model to GPU,
will check if GPU available

MODEL_DIR Path subclass for non-Windows systems.
MODEL_NAMES Built-in mutable sequence.
MXNET_ENABLED bool(x) -> bool
OMNI_INSTALLED bool(x) -> bool
SizeModel(cp_model[, device, pretrained_size]) linear regression model for determining the size of ob-

jects in image used to rescale before input to cp_model
uses styles from cp_model

cache_model_path (basename)

deprecation_warning_cellprob_dist_threshold(...)

model_path (model_type, model_index, use_torch)

models_logger Instances of the Logger class represent a single logging
channel.

size_model_path (model_type, use_torch)

ARM

cellpose_omni.models.ARM = False

bool(x) -> bool

Returns True when the argument x is true, False otherwise. The builtins True and False are the only two instances
of the class bool. The class bool is a subclass of the class int, and cannot be subclassed.
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BD_MODEL_NAMES

cellpose_omni.models.BD_MODEL_NAMES = ['bact_phase_omni', 'bact_fluor_omni', 'worm_omni',
'worm_bact_omni', 'worm_high_res_omni', 'cyto2_omni', 'plant_omni']

Built-in mutable sequence.

If no argument is given, the constructor creates a new empty list. The argument must be an iterable if specified.

C1_BD_MODELS

cellpose_omni.models.C1_BD_MODELS = ['plant_omni']

Built-in mutable sequence.

If no argument is given, the constructor creates a new empty list. The argument must be an iterable if specified.

C1_MODELS

cellpose_omni.models.C1_MODELS = []

Built-in mutable sequence.

If no argument is given, the constructor creates a new empty list. The argument must be an iterable if specified.

C2_BD_MODELS

cellpose_omni.models.C2_BD_MODELS = ['bact_phase_omni', 'bact_fluor_omni', 'worm_omni',
'worm_bact_omni', 'worm_high_res_omni', 'cyto2_omni']

Built-in mutable sequence.

If no argument is given, the constructor creates a new empty list. The argument must be an iterable if specified.

C2_MODELS

cellpose_omni.models.C2_MODELS = ['bact_phase_cp', 'bact_fluor_cp', 'plant_cp',
'worm_cp']

Built-in mutable sequence.

If no argument is given, the constructor creates a new empty list. The argument must be an iterable if specified.

C2_MODEL_NAMES

cellpose_omni.models.C2_MODEL_NAMES = ['bact_phase_omni', 'bact_fluor_omni', 'worm_omni',
'worm_bact_omni', 'worm_high_res_omni', 'cyto2_omni', 'bact_phase_cp', 'bact_fluor_cp',
'plant_cp', 'worm_cp', 'cyto', 'nuclei', 'cyto2']

Built-in mutable sequence.

If no argument is given, the constructor creates a new empty list. The argument must be an iterable if specified.
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CP_MODELS

cellpose_omni.models.CP_MODELS = ['cyto', 'nuclei', 'cyto2']

Built-in mutable sequence.

If no argument is given, the constructor creates a new empty list. The argument must be an iterable if specified.

Cellpose

class cellpose_omni.models.Cellpose(gpu=False, model_type='cyto', net_avg=True, device=None,
use_torch=True, model_dir=None, dim=2, omni=None)

Bases: object

main model which combines SizeModel and CellposeModel

Parameters

• gpu (bool (optional, default False)) -- whether or not to use GPU, will check if
GPU available

• model_type (str (optional, default 'cyto')) -- 'cyto'=cytoplasm model; 'nu-
clei'=nucleus model

• net_avg (bool (optional, default True)) -- loads the 4 built-in networks and aver-
ages them if True, loads one network if False

• device (gpu device (optional, default None)) -- where model is saved (e.g.
mx.gpu() or mx.cpu()), overrides gpu input, recommended if you want to use a specific GPU
(e.g. mx.gpu(4) or torch.cuda.device(4))

• torch (bool (optional, default True)) -- run model using torch if available

Methods Summary

eval(x[, batch_size, channels, ...]) run cellpose and get masks

Methods Documentation

eval(x, batch_size=8, channels=None, channel_axis=None, z_axis=None, invert=False, normalize=True,
diameter=30.0, do_3D=False, anisotropy=None, net_avg=True, augment=False, tile=True,
tile_overlap=0.1, resample=True, interp=True, cluster=False, boundary_seg=False, affinity_seg=False,
despur=True, flow_threshold=0.4, mask_threshold=0.0, cellprob_threshold=None,
dist_threshold=None, diam_threshold=12.0, min_size=15, max_size=None, stitch_threshold=0.0,
rescale=None, progress=None, omni=False, verbose=False, transparency=False,
model_loaded=False)

run cellpose and get masks

Parameters

• x (list or array of images) -- can be list of 2D/3D images, or array of 2D/3D im-
ages, or 4D image array

• batch_size (int (optional, default 8)) -- number of 224x224 patches to run si-
multaneously on the GPU (can make smaller or bigger depending on GPU memory usage)
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• channels (list (optional, default None)) -- list of channels, either of length 2
or of length number of images by 2. First element of list is the channel to segment
(0=grayscale, 1=red, 2=green, 3=blue). Second element of list is the optional nuclear chan-
nel (0=none, 1=red, 2=green, 3=blue). For instance, to segment grayscale images, input
[0,0]. To segment images with cells in green and nuclei in blue, input [2,3]. To segment
one grayscale image and one image with cells in green and nuclei in blue, input [[0,0],
[2,3]].

• channel_axis (int (optional, default None)) -- if None, channels dimension is
attempted to be automatically determined

• z_axis (int (optional, default None)) -- if None, z dimension is attempted to be
automatically determined

• invert (bool (optional, default False)) -- invert image pixel intensity before
running network (if True, image is also normalized)

• normalize (bool (optional, default True)) -- normalize data so 0.0=1st per-
centile and 1.0=99th percentile of image intensities in each channel

• diameter (float (optional, default 30.)) -- if set to None, then diameter is au-
tomatically estimated if size model is loaded

• do_3D (bool (optional, default False)) -- set to True to run 3D segmentation on
4D image input

• anisotropy (float (optional, default None)) -- for 3D segmentation, optional
rescaling factor (e.g. set to 2.0 if Z is sampled half as dense as X or Y)

• net_avg (bool (optional, default True)) -- runs the 4 built-in networks and aver-
ages them if True, runs one network if False

• augment (bool (optional, default False)) -- tiles image with overlapping tiles
and flips overlapped regions to augment

• tile (bool (optional, default True)) -- tiles image to ensure GPU/CPU memory
usage limited (recommended)

• tile_overlap (float (optional, default 0.1)) -- fraction of overlap of tiles
when computing flows

• resample (bool (optional, default True)) -- run dynamics at original image size
(will be slower but create more accurate boundaries)

• interp (bool (optional, default True)) -- interpolate during 2D dynamics (not
available in 3D) (in previous versions it was False)

• flow_threshold (float (optional, default 0.4)) -- flow error threshold (all
cells with errors below threshold are kept) (not used for 3D)

• mask_threshold (float (optional, default 0.0)) -- all pixels with value above
threshold kept for masks, decrease to find more and larger masks

• dist_threshold (float (optional, default None) DEPRECATED) -- use
mask_threshold instead

• cellprob_threshold (float (optional, default None) DEPRECATED) -- use
mask_threshold instead

• min_size (int (optional, default 15)) -- minimum number of pixels per mask,
can turn off with -1
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• stitch_threshold (float (optional, default 0.0)) -- if stitch_threshold>0.0
and not do_3D and equal image sizes, masks are stitched in 3D to return volume seg-
mentation

• rescale (float (optional, default None)) -- if diameter is set to None, and
rescale is not None, then rescale is used instead of diameter for resizing image

• progress (pyqt progress bar (optional, default None)) -- to return progress
bar status to GUI

• omni (bool (optional, default False)) -- use omnipose mask recontruction fea-
tures

• calc_trace (bool (optional, default False)) -- calculate pixel traces and return
as part of the flow

• verbose (bool (optional, default False)) -- turn on additional output to logs for
debugging

• verbose -- turn on additional output to logs for debugging

• transparency (bool (optional, default False)) -- modulate flow opacity by
magnitude instead of brightness (can use flows on any color background)

• model_loaded (bool (optional, default False)) -- internal variable for deter-
mining if model has been loaded, used in __main__.py

Returns

• masks (list of 2D arrays, or single 3D array (if do_3D=True)) -- labelled image, where
0=no masks; 1,2,...=mask labels

• flows (list of lists 2D arrays, or list of 3D arrays (if do_3D=True)) -- flows[k][0] = XY
flow in HSV 0-255 flows[k][1] = flows at each pixel flows[k][2] = scalar cell probability
(Cellpose) or distance transform (Omnipose) flows[k][3] = final pixel locations after Euler
integration flows[k][4] = boundary output (nonempty for Omnipose) flows[k][5] = pixel
traces (nonempty for calc_trace=True)

• styles (list of 1D arrays of length 256, or single 1D array (if do_3D=True)) -- style vector
summarizing each image, also used to estimate size of objects in image

• diams (list of diameters, or float (if do_3D=True))

CellposeModel

class cellpose_omni.models.CellposeModel(gpu=False, pretrained_model=False, model_type=None,
net_avg=True, use_torch=True, diam_mean=30.0,
device=None, residual_on=True, style_on=True,
concatenation=False, nchan=1, nclasses=2, dim=2,
omni=True, checkpoint=False, dropout=False, kernel_size=2)

Bases: UnetModel

Parameters

• gpu (bool (optional, default False)) -- whether or not to save model to GPU, will
check if GPU available

• pretrained_model (str or list of strings (optional, default False)) --
path to pretrained cellpose model(s), if None or False, no model loaded
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• model_type (str (optional, default None)) -- 'cyto'=cytoplasm model; 'nu-
clei'=nucleus model; if None, pretrained_model used

• net_avg (bool (optional, default True)) -- loads the 4 built-in networks and aver-
ages them if True, loads one network if False

• torch (bool (optional, default True)) -- use torch nn rather than mxnet

• diam_mean (float (optional, default 27.)) -- mean 'diameter', 27. is built in value
for 'cyto' model

• device (mxnet device (optional, default None)) -- where model is saved
(mx.gpu() or mx.cpu()), overrides gpu input, recommended if you want to use a specific
GPU (e.g. mx.gpu(4))

• model_dir (str (optional, default None)) -- overwrite the built in model directory
where cellpose looks for models

• omni (use omnipose model (optional, default False)) --

Methods Summary

eval(x[, batch_size, indices, channels, ...]) Evaluation for CellposeModel.
loss_fn(lbl, y) loss function between true labels lbl and prediction y

This is the one used to train the instance segmentation
network.

train(train_data, train_labels[, ...]) train network with images train_data

Methods Documentation

eval(x, batch_size=8, indices=None, channels=None, channel_axis=None, z_axis=None, normalize=True,
invert=False, rescale=None, diameter=None, do_3D=False, anisotropy=None, net_avg=True,
augment=False, tile=True, tile_overlap=0.1, bsize=224, num_workers=8, resample=True, interp=True,
cluster=False, suppress=None, boundary_seg=False, affinity_seg=False, despur=True,
flow_threshold=0.4, mask_threshold=0.0, diam_threshold=12.0, niter=None, cellprob_threshold=None,
dist_threshold=None, flow_factor=5.0, compute_masks=True, min_size=15, max_size=None,
stitch_threshold=0.0, progress=None, show_progress=True, omni=False, calc_trace=False,
verbose=False, transparency=False, loop_run=False, model_loaded=False, hysteresis=True)

Evaluation for CellposeModel. Segment list of images x, or 4D array - Z x nchan x Y x X

Parameters

• x (list or array of images) -- can be list of 2D/3D/4D images, or array of 2D/3D/4D
images

• batch_size (int (optional, default 8)) -- number of 224x224 patches to run si-
multaneously on the GPU (can make smaller or bigger depending on GPU memory usage)

• channels (list (optional, default None)) -- list of channels, either of length 2
or of length number of images by 2. First element of list is the channel to segment
(0=grayscale, 1=red, 2=green, 3=blue). Second element of list is the optional nuclear chan-
nel (0=none, 1=red, 2=green, 3=blue). For instance, to segment grayscale images, input
[0,0]. To segment images with cells in green and nuclei in blue, input [2,3]. To segment
one grayscale image and one image with cells in green and nuclei in blue, input [[0,0],
[2,3]].
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• channel_axis (int (optional, default None)) -- if None, channels dimension is
attempted to be automatically determined

• z_axis (int (optional, default None)) -- if None, z dimension is attempted to be
automatically determined

• normalize (bool (default, True)) -- normalize data so 0.0=1st percentile and
1.0=99th percentile of image intensities in each channel

• invert (bool (optional, default False)) -- invert image pixel intensity before
running network

• rescale (float (optional, default None)) -- resize factor for each image, if None,
set to 1.0

• diameter (float (optional, default None)) -- diameter for each image (only used
if rescale is None), if diameter is None, set to diam_mean

• do_3D (bool (optional, default False)) -- set to True to run 3D segmentation on
4D image input

• anisotropy (float (optional, default None)) -- for 3D segmentation, optional
rescaling factor (e.g. set to 2.0 if Z is sampled half as dense as X or Y)

• net_avg (bool (optional, default True)) -- runs the 4 built-in networks and aver-
ages them if True, runs one network if False

• augment (bool (optional, default False)) -- tiles image with overlapping tiles
and flips overlapped regions to augment

• tile (bool (optional, default True)) -- tiles image to ensure GPU/CPU memory
usage limited (recommended)

• tile_overlap (float (optional, default 0.1)) -- fraction of overlap of tiles
when computing flows

• resample (bool (optional, default True)) -- run dynamics at original image size
(will be slower but create more accurate boundaries)

• interp (bool (optional, default True)) -- interpolate during 2D dynamics (not
available in 3D) (in previous versions it was False)

• flow_threshold (float (optional, default 0.4)) -- flow error threshold (all
cells with errors below threshold are kept) (not used for 3D)

• mask_threshold (float (optional, default 0.0)) -- all pixels with value above
threshold kept for masks, decrease to find more and larger masks

• dist_threshold (float (optional, default None) DEPRECATED) -- use
mask_threshold instead

• cellprob_threshold (float (optional, default None) DEPRECATED) -- use
mask_threshold instead

• compute_masks (bool (optional, default True)) -- Whether or not to compute
dynamics and return masks. This is set to False when retrieving the styles for the size
model.

• min_size (int (optional, default 15)) -- minimum number of pixels per mask,
can turn off with -1

• stitch_threshold (float (optional, default 0.0)) -- if stitch_threshold>0.0
and not do_3D, masks are stitched in 3D to return volume segmentation
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• progress (pyqt progress bar (optional, default None)) -- to return progress
bar status to GUI

• omni (bool (optional, default False)) -- use omnipose mask reconstruction fea-
tures

• calc_trace (bool (optional, default False)) -- calculate pixel traces and return
as part of the flow

• verbose (bool (optional, default False)) -- turn on additional output to logs for
debugging

• transparency (bool (optional, default False)) -- modulate flow opacity by
magnitude instead of brightness (can use flows on any color background)

• loop_run (bool (optional, default False)) -- internal variable for determining if
model has been loaded, stops model loading in loop over images

• model_loaded (bool (optional, default False)) -- internal variable for deter-
mining if model has been loaded, used in __main__.py

Returns

• masks (list of 2D arrays, or single 3D array (if do_3D=True)) -- labelled image, where
0=no masks; 1,2,...=mask labels

• flows (list of lists 2D arrays, or list of 3D arrays (if do_3D=True)) -- flows[k][0] = 8-bit RGb
phase plot of flow field flows[k][1] = flows at each pixel flows[k][2] = scalar cell probability
(Cellpose) or distance transform (Omnipose) flows[k][3] = boundary output (nonempty for
Omnipose) flows[k][4] = final pixel locations after Euler integration flows[k][5] = pixel
traces (nonempty for calc_trace=True)

• styles (list of 1D arrays of length 64, or single 1D array (if do_3D=True)) -- style vector
summarizing each image, also used to estimate size of objects in image

loss_fn(lbl, y)
loss function between true labels lbl and prediction y This is the one used to train the instance segmentation
network.

train(train_data, train_labels, train_links=None, train_files=None, test_data=None, test_labels=None,
test_links=None, test_files=None, channels=None, channel_axis=0, normalize=True,
save_path=None, save_every=100, save_each=False, learning_rate=0.2, n_epochs=500,
momentum=0.9, SGD=True, weight_decay=1e-05, batch_size=8, dataloader=False, num_workers=0,
nimg_per_epoch=None, rescale=True, min_train_masks=5, netstr=None, tyx=None, timing=False,
do_autocast=False, affinity_field=False)

train network with images train_data

Parameters

• train_data (list of arrays (2D or 3D)) -- images for training

• train_labels (list of arrays (2D or 3D)) -- labels for train_data, where 0=no
masks; 1,2,...=mask labels can include flows as additional images

• train_links (list of label links) -- These lists of label pairs define which labels
are "linked", i.e. should be treated as part of the same object. This is how Omnipose
handles internal/self-contact boundaries during training.

• train_files (list of strings) -- file names for images in train_data (to save flows
for future runs)

• test_data (list of arrays (2D or 3D)) -- images for testing
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• test_labels (list of arrays (2D or 3D)) -- See train_labels.

• test_links (list of label links) -- See train_links.

• test_files (list of strings) -- file names for images in test_data (to save flows for
future runs)

• channels (list of ints (default, None)) -- channels to use for training

• normalize (bool (default, True)) -- normalize data so 0.0=1st percentile and
1.0=99th percentile of image intensities in each channel

• save_path (string (default, None)) -- where to save trained model, if None it is not
saved

• save_every (int (default, 100)) -- save network every [save_every] epochs

• learning_rate (float or list/np.ndarray (default, 0.2)) -- learning rate for
training, if list, must be same length as n_epochs

• n_epochs (int (default, 500)) -- how many times to go through whole training set
during training

• weight_decay (float (default, 0.00001)) --

• SGD (bool (default, True)) -- use SGD as optimization instead of RAdam

• batch_size (int (optional, default 8)) -- number of tyx-sized patches to run si-
multaneously on the GPU (can make smaller or bigger depending on GPU memory usage)

• nimg_per_epoch (int (optional, default None)) -- minimum number of images
to train on per epoch, with a small training set (< 8 images) it may help to set to 8

• rescale (bool (default, True)) -- whether or not to rescale images to diam_mean
during training, if True it assumes you will fit a size model after training or resize your
images accordingly, if False it will try to train the model to be scale-invariant (works worse)

• min_train_masks (int (default, 5)) -- minimum number of masks an image must
have to use in training set

• netstr (str (default, None)) -- name of network, otherwise saved with name as
params + training start time

• tyx (int, tuple (default, 224x224 in 2D)) -- size of image patches used for
training

MODEL_DIR

cellpose_omni.models.MODEL_DIR = PosixPath('/home/docs/.cellpose/models')

Path subclass for non-Windows systems.

On a POSIX system, instantiating a Path should return this object.
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MODEL_NAMES

cellpose_omni.models.MODEL_NAMES = ['bact_phase_omni', 'bact_fluor_omni', 'worm_omni',
'worm_bact_omni', 'worm_high_res_omni', 'cyto2_omni', 'plant_omni', 'bact_phase_cp',
'bact_fluor_cp', 'plant_cp', 'worm_cp', 'cyto', 'nuclei', 'cyto2']

Built-in mutable sequence.

If no argument is given, the constructor creates a new empty list. The argument must be an iterable if specified.

MXNET_ENABLED

cellpose_omni.models.MXNET_ENABLED = False

bool(x) -> bool

Returns True when the argument x is true, False otherwise. The builtins True and False are the only two instances
of the class bool. The class bool is a subclass of the class int, and cannot be subclassed.

OMNI_INSTALLED

cellpose_omni.models.OMNI_INSTALLED = True

bool(x) -> bool

Returns True when the argument x is true, False otherwise. The builtins True and False are the only two instances
of the class bool. The class bool is a subclass of the class int, and cannot be subclassed.

SizeModel

class cellpose_omni.models.SizeModel(cp_model, device=None, pretrained_size=None, **kwargs)
Bases: object

linear regression model for determining the size of objects in image used to rescale before input to cp_model
uses styles from cp_model

Parameters

• cp_model (UnetModel or CellposeModel) -- model from which to get styles

• device (mxnet device (optional, default mx.cpu())) -- where cellpose model is
saved (mx.gpu() or mx.cpu())

• pretrained_size (str) -- path to pretrained size model

• omni (bool) -- whether or not to use distance-based size metrics corresponding to 'omni'
model

Methods Summary

eval(x[, channels, channel_axis, normalize, ...]) Evaluation for SizeModel.
train(train_data, train_labels[, test_data, ...]) train size model with images train_data to estimate

linear model from styles to diameters
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Methods Documentation

eval(x, channels=None, channel_axis=None, normalize=True, invert=False, augment=False, tile=True,
batch_size=8, progress=None, interp=True, omni=False)

Evaluation for SizeModel. Use images x to produce style or use style input to predict size of objects in
image.

Object size estimation is done in two steps: 1. use a linear regression model to predict size from style in
image 2. resize image to predicted size and run CellposeModel to get output masks.

Take the median object size of the predicted masks as the final predicted size.

Parameters

• x (list or array of images) -- can be list of 2D/3D images, or array of 2D/3D images

• channels (list (optional, default None)) -- list of channels, either of length 2
or of length number of images by 2. First element of list is the channel to segment
(0=grayscale, 1=red, 2=green, 3=blue). Second element of list is the optional nuclear chan-
nel (0=none, 1=red, 2=green, 3=blue). For instance, to segment grayscale images, input
[0,0]. To segment images with cells in green and nuclei in blue, input [2,3]. To segment
one grayscale image and one image with cells in green and nuclei in blue, input [[0,0],
[2,3]].

• channel_axis (int (optional, default None)) -- if None, channels dimension is
attempted to be automatically determined

• normalize (bool (default, True)) -- normalize data so 0.0=1st percentile and
1.0=99th percentile of image intensities in each channel

• invert (bool (optional, default False)) -- invert image pixel intensity before
running network

• augment (bool (optional, default False)) -- tiles image with overlapping tiles
and flips overlapped regions to augment

• tile (bool (optional, default True)) -- tiles image to ensure GPU/CPU memory
usage limited (recommended)

• progress (pyqt progress bar (optional, default None)) -- to return progress
bar status to GUI

Returns

• diam (array, float) -- final estimated diameters from images x or styles style after running
both steps

• diam_style (array, float) -- estimated diameters from style alone

train(train_data, train_labels, test_data=None, test_labels=None, channels=None, normalize=True,
learning_rate=0.2, n_epochs=10, l2_regularization=1.0, batch_size=8)

train size model with images train_data to estimate linear model from styles to diameters

Parameters

• train_data (list of arrays (2D or 3D)) -- images for training

• train_labels (list of arrays (2D or 3D)) -- labels for train_data, where 0=no
masks; 1,2,...=mask labels can include flows as additional images

• channels (list of ints (default, None)) -- channels to use for training
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• normalize (bool (default, True)) -- normalize data so 0.0=1st percentile and
1.0=99th percentile of image intensities in each channel

• n_epochs (int (default, 10)) -- how many times to go through whole training set
(taking random patches) for styles for diameter estimation

• l2_regularization (float (default, 1.0)) -- regularize linear model from styles
to diameters

• batch_size (int (optional, default 8)) -- number of 224x224 patches to run si-
multaneously on the GPU (can make smaller or bigger depending on GPU memory usage)

cache_model_path

cellpose_omni.models.cache_model_path(basename)

deprecation_warning_cellprob_dist_threshold

cellpose_omni.models.deprecation_warning_cellprob_dist_threshold(cellprob_threshold,
dist_threshold)

model_path

cellpose_omni.models.model_path(model_type, model_index, use_torch)

models_logger

cellpose_omni.models.models_logger = <Logger cellpose_omni.models (INFO)>

Instances of the Logger class represent a single logging channel. A "logging channel" indicates an area of an
application. Exactly how an "area" is defined is up to the application developer. Since an application can have
any number of areas, logging channels are identified by a unique string. Application areas can be nested (e.g.
an area of "input processing" might include sub-areas "read CSV files", "read XLS files" and "read Gnumeric
files"). To cater for this natural nesting, channel names are organized into a namespace hierarchy where levels are
separated by periods, much like the Java or Python package namespace. So in the instance given above, channel
names might be "input" for the upper level, and "input.csv", "input.xls" and "input.gnu" for the sub-levels. There
is no arbitrary limit to the depth of nesting.

size_model_path

cellpose_omni.models.size_model_path(model_type, use_torch)
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14.2.5 cellpose_omni.io

check_dir(path)

get_image_files(folder[, mask_filter, ...]) find all images in a folder and if look_one_level_down
all subfolders

get_label_files(img_names[, label_filter, ...]) Get the corresponding labels and flows for the given file
images.

getname(path[, suffix])

imread(filename)

imsave(filename, arr)

imwrite(filename, arr, **kwargs)

load_links(filename) Read a txt or csv file with label links. These should look
like: 1,2 1,3 4,7 6,19 . . . Returns links as a set of tuples.

load_train_test_data(train_dir[, test_dir, ...]) Loads the training and optional test data for training
runs.

logger_setup([verbose])

masks_flows_to_seg(images, masks, flows, ...) save output of model eval to be loaded in GUI
outlines_to_text(base, outlines)

save_masks(images, masks, flows, file_names) save masks + nicely plotted segmentation image to png
and/or tiff

save_server([parent, filename]) Uploads a *_seg.npy file to the bucket.
save_to_png(images, masks, flows, file_names) deprecated (runs io.save_masks with png=True)
write_links(savedir, basename, links) Write label link file.

check_dir

cellpose_omni.io.check_dir(path)
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get_image_files

cellpose_omni.io.get_image_files(folder, mask_filter='_masks', img_filter=None,
look_one_level_down=False, extensions=['png', 'jpg', 'jpeg', 'tif', 'tiff'],
pattern=None)

find all images in a folder and if look_one_level_down all subfolders

get_label_files

cellpose_omni.io.get_label_files(img_names, label_filter='_cp_masks', img_filter='', ext=None,
dir_above=False, subfolder='', parent=None, flows=False, links=False)

Get the corresponding labels and flows for the given file images. If no extension is given, looks for TIF, TIFF,
and PNG. If multiple are found, the first in the list is returned. If extension is given, no checks for file existence
are made - useful for finding nonstandard output like txt or npy.

Parameters

• img_names (list, str) -- list of full image file paths

• label_filter (str) -- the label filter sufix, defaults to _cp_masks can be _flows, _ncolor,
etc.

• ext (str) -- the label extension can be .tif, .png, .txt, etc.

• img_filter (str) -- the image filter suffix, e.g. _img

• dir_above (bool) -- whether or not masks are stored in the image parent folder

• subfolder (str) -- the name of the subfolder where the labels are stored

• parent (str) -- parent folder or list of folders where masks are stored, if different from
images

• flows (Bool) -- whether or not to search for and return stored flows

• links (bool) -- whether or not to search for and return stored link files

Return type
list of all absolute label paths (str)

getname

cellpose_omni.io.getname(path, suffix='')

imread

cellpose_omni.io.imread(filename)
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imsave

cellpose_omni.io.imsave(filename, arr)

imwrite

cellpose_omni.io.imwrite(filename, arr, **kwargs)

load_links

cellpose_omni.io.load_links(filename)
Read a txt or csv file with label links. These should look like:

1,2 1,3 4,7 6,19 . . .

Returns links as a set of tuples.

load_train_test_data

cellpose_omni.io.load_train_test_data(train_dir, test_dir=None, image_filter='', mask_filter='_masks',
unet=False, look_one_level_down=True, omni=False,
do_links=True)

Loads the training and optional test data for training runs.

logger_setup

cellpose_omni.io.logger_setup(verbose=False)

masks_flows_to_seg

cellpose_omni.io.masks_flows_to_seg(images, masks, flows, diams, file_names, channels=None)
save output of model eval to be loaded in GUI

can be list output (run on multiple images) or single output (run on single image)

saved to file_names[k]+'_seg.npy'

Parameters

• images ((list of) 2D or 3D arrays) -- images input into cellpose

• masks ((list of) 2D arrays, int) -- masks output from cellpose_omni.eval, where
0=NO masks; 1,2,...=mask labels

• flows ((list of) list of ND arrays) -- flows output from cellpose_omni.eval

• diams (float array) -- diameters used to run Cellpose

• file_names ((list of) str) -- names of files of images

• channels (list of int (optional, default None)) -- channels used to run Cell-
pose
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outlines_to_text

cellpose_omni.io.outlines_to_text(base, outlines)

save_masks

cellpose_omni.io.save_masks(images, masks, flows, file_names, png=True, tif=False, suffix='',
save_flows=False, save_outlines=False, outline_col=[1, 0, 0],
save_ncolor=False, dir_above=False, in_folders=False, savedir=None,
save_txt=True, save_plot=True, omni=True, channel_axis=None,
channels=None)

save masks + nicely plotted segmentation image to png and/or tiff

if png, masks[k] for images[k] are saved to file_names[k]+'_cp_masks.png'

if tif, masks[k] for images[k] are saved to file_names[k]+'_cp_masks.tif'

if png and matplotlib installed, full segmentation figure is saved to file_names[k]+'_cp.png'

only tif option works for 3D data

Parameters

• images ((list of) 2D, 3D or 4D arrays) -- images input into cellpose

• masks ((list of) 2D arrays, int) -- masks output from cellpose_omni.eval, where
0=NO masks; 1,2,...=mask labels

• flows ((list of) list of ND arrays) -- flows output from cellpose_omni.eval

• file_names ((list of) str) -- names of files of images

• savedir (str) -- absolute path where images will be saved. Default is none (saves to image
directory)

• save_flows (bool) -- Can choose which outputs/views to save. ncolor is a 4 (or 5, if 4 takes
too long) index version of the labels that is way easier to visualize than having hundreds of
unique colors that may be similar and touch. Any color map can be applied to it (0,1,2,3,4,...).

• save_outlines (bool) -- Can choose which outputs/views to save. ncolor is a 4 (or 5,
if 4 takes too long) index version of the labels that is way easier to visualize than having
hundreds of unique colors that may be similar and touch. Any color map can be applied to
it (0,1,2,3,4,...).

• save_ncolor (bool) -- Can choose which outputs/views to save. ncolor is a 4 (or 5, if 4
takes too long) index version of the labels that is way easier to visualize than having hun-
dreds of unique colors that may be similar and touch. Any color map can be applied to it
(0,1,2,3,4,...).

• save_txt (bool) -- Can choose which outputs/views to save. ncolor is a 4 (or 5, if 4 takes
too long) index version of the labels that is way easier to visualize than having hundreds of
unique colors that may be similar and touch. Any color map can be applied to it (0,1,2,3,4,...).
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save_server

cellpose_omni.io.save_server(parent=None, filename=None)
Uploads a *_seg.npy file to the bucket.

Parameters

• parent (PyQt.MainWindow (optional, default None)) -- GUI window to grab file
info from

• filename (str (optional, default None)) -- if no GUI, send this file to server

save_to_png

cellpose_omni.io.save_to_png(images, masks, flows, file_names)
deprecated (runs io.save_masks with png=True)

does not work for 3D images

write_links

cellpose_omni.io.write_links(savedir, basename, links)
Write label link file. See load_links() for its output format.

Parameters

• savedir (string) -- directory in which to save

• basename (string) -- file name base to which _links.txt is appended.

• links (set) -- set of label tuples {(x,y),(z,w),...}

14.2.6 cellpose_omni.plot

disk(med, r, Ly, Lx) returns pixels of disk with radius r and center med
dx_to_circ(dP[, transparency, mask, ...]) dP is 2 x Y x X => 'optic' flow representation
image_to_rgb(img0[, channels, channel_axis, ...]) image is 2 x Ly x Lx or Ly x Lx x 2 - change to RGB Ly

x Lx x 3
interesting_patch (mask[, bsize]) get patch of size bsize x bsize with most masks
mask_overlay(img, masks[, colors, omni]) overlay masks on image (set image to grayscale)
mask_rgb(masks[, colors]) masks in random rgb colors
outline_view(img0, maski[, boundaries, ...]) Generates a red outline overlay onto image.
show_segmentation(fig, img, maski, flowi[, ...]) plot segmentation results (like on website)
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disk

cellpose_omni.plot.disk(med, r, Ly, Lx)
returns pixels of disk with radius r and center med

dx_to_circ

cellpose_omni.plot.dx_to_circ(dP, transparency=False, mask=None, sinebow=True, norm=True)
dP is 2 x Y x X => 'optic' flow representation

Parameters

• dP (2xLyxLx array) -- Flow field components [dy,dx]

• transparency (bool, default False) -- magnitude of flow controls opacity, not light-
ness (clear background)

• mask (2D array) -- Multiplies each RGB component to suppress noise

image_to_rgb

cellpose_omni.plot.image_to_rgb(img0, channels=None, channel_axis=- 1, omni=False)
image is 2 x Ly x Lx or Ly x Lx x 2 - change to RGB Ly x Lx x 3

interesting_patch

cellpose_omni.plot.interesting_patch(mask, bsize=130)
get patch of size bsize x bsize with most masks

mask_overlay

cellpose_omni.plot.mask_overlay(img, masks, colors=None, omni=False)
overlay masks on image (set image to grayscale)

Parameters

• img (int or float, 2D or 3D array) -- img is of size [Ly x Lx (x nchan)]

• masks (int, 2D array) -- masks where 0=NO masks; 1,2,...=mask labels

• colors (int, 2D array (optional, default None)) -- size [nmasks x 3], each entry
is a color in 0-255 range

Returns
RGB -- array of masks overlaid on grayscale image

Return type
uint8, 3D array
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mask_rgb

cellpose_omni.plot.mask_rgb(masks, colors=None)
masks in random rgb colors

Parameters

• masks (int, 2D array) -- masks where 0=NO masks; 1,2,...=mask labels

• colors (int, 2D array (optional, default None)) -- size [nmasks x 3], each entry
is a color in 0-255 range

Returns
RGB -- array of masks overlaid on grayscale image

Return type
uint8, 3D array

outline_view

cellpose_omni.plot.outline_view(img0, maski, boundaries=None, color=[1, 0, 0], channels=None,
channel_axis=- 1, mode='inner', connectivity=2, skip_formatting=False)

Generates a red outline overlay onto image.

show_segmentation

cellpose_omni.plot.show_segmentation(fig, img, maski, flowi, bdi=None, channels=None, file_name=None,
omni=False, seg_norm=False, bg_color=None, outline_color=[1,
0, 0], img_colors=None, channel_axis=- 1, display=True,
interpolation='bilinear')

plot segmentation results (like on website)

Can save each panel of figure with file_name option. Use channels option if img input is not an RGB image with
3 channels.

Parameters

• fig (matplotlib.pyplot.figure) -- figure in which to make plot

• img (2D or 3D array) -- image input into cellpose

• maski (int, 2D array) -- for image k, masks[k] output from cellpose_omni.eval, where
0=NO masks; 1,2,...=mask labels

• flowi (int, 2D array) -- for image k, flows[k][0] output from cellpose_omni.eval (RGB
of flows)

• channels (list of int (optional, default [0,0])) -- channels used to run Cell-
pose, no need to use if image is RGB

• file_name (str (optional, default None)) -- file name of image, if file_name is not
None, figure panels are saved

• omni (bool (optional, default False)) -- use omni version of normalize99, im-
age_to_rgb

• seg_norm (bool (optional, default False)) -- improve cell visibility under labels

• bg_color (float (Optional, default none)) -- background color to draw behind
flow (visible if flow transparency is on)
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• img_colors (NDarray, float (Optional, default none)) -- colors to which each
image channel will be mapped (multichannel defaults to sinebow)

14.2.7 cellpose_omni.metrics

aggregated_jaccard_index(masks_true,
masks_pred)

AJI = intersection of all matched masks / union of all
masks

average_precision(masks_true, masks_pred[, ...]) average precision estimation: AP = TP / (TP + FP + FN)
boundary_scores(masks_true, masks_pred, scales) boundary precision / recall / Fscore
flow_error(maski, dP_net[, use_gpu, device]) error in flows from predicted masks vs flows predicted

by network run on image
mask_ious(masks_true, masks_pred) return best-matched masks

aggregated_jaccard_index

cellpose_omni.metrics.aggregated_jaccard_index(masks_true, masks_pred)
AJI = intersection of all matched masks / union of all masks

Parameters

• masks_true (list of ND-arrays (int) or ND-array (int)) -- where 0=NO
masks; 1,2... are mask labels

• masks_pred (list of ND-arrays (int) or ND-array (int)) -- ND-array (int)
where 0=NO masks; 1,2... are mask labels

Returns
aji

Return type
aggregated jaccard index for each set of masks

average_precision

cellpose_omni.metrics.average_precision(masks_true, masks_pred, threshold=[0.5, 0.75, 0.9])
average precision estimation: AP = TP / (TP + FP + FN)

This function is based heavily on the fast stardist matching functions (https://github.com/mpicbg-csbd/stardist/
blob/master/stardist/matching.py)

Parameters

• masks_true (list of ND-arrays (int) or ND-array (int)) -- where 0=NO
masks; 1,2... are mask labels

• masks_pred (list of ND-arrays (int) or ND-array (int)) -- ND-array (int)
where 0=NO masks; 1,2... are mask labels

Returns

• ap (array [len(masks_true) x len(threshold)]) -- average precision at thresholds

• tp (array [len(masks_true) x len(threshold)]) -- number of true positives at thresholds

• fp (array [len(masks_true) x len(threshold)]) -- number of false positives at thresholds

• fn (array [len(masks_true) x len(threshold)]) -- number of false negatives at thresholds
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boundary_scores

cellpose_omni.metrics.boundary_scores(masks_true, masks_pred, scales)
boundary precision / recall / Fscore

flow_error

cellpose_omni.metrics.flow_error(maski, dP_net, use_gpu=False, device=None)
error in flows from predicted masks vs flows predicted by network run on image

This function serves to benchmark the quality of masks, it works as follows 1. The predicted masks are used to
create a flow diagram 2. The mask-flows are compared to the flows that the network predicted

If there is a discrepancy between the flows, it suggests that the mask is incorrect. Masks with flow_errors greater
than 0.4 are discarded by default. Setting can be changed in Cellpose.eval or CellposeModel.eval.

Parameters

• maski (ND-array (int)) -- masks produced from running dynamics on dP_net, where
0=NO masks; 1,2... are mask labels

• dP_net (ND-array (float)) -- ND flows where dP_net.shape[1:] = maski.shape

Returns

• flow_errors (float array with length maski.max()) -- mean squared error between predicted
flows and flows from masks

• dP_masks (ND-array (float)) -- ND flows produced from the predicted masks

mask_ious

cellpose_omni.metrics.mask_ious(masks_true, masks_pred)
return best-matched masks
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14.2.8 cellpose_omni.dynamics

compute_masks(dP, cellprob[, bd, p, inds, ...]) compute masks using dynamics from dP, cellprob, and
boundary

follow_flows(dP[, mask, inds, niter, ...]) define pixels and run dynamics to recover masks in 2D
get_masks(p[, iscell, rpad, flows, ...]) create masks using pixel convergence after running dy-

namics
labels_to_flows(labels[, files, use_gpu, ...]) convert labels (list of masks or flows) to flows for train-

ing model
map_coordinates(I, yc, xc, Y) bilinear interpolation of image 'I' in-place with ycoordi-

nates yc and xcoordinates xc to Y
masks_to_flows(masks[, use_gpu, device]) convert masks to flows using diffusion from center pixel
masks_to_flows_cpu(masks[, device]) convert masks to flows using diffusion from center pixel

Center of masks where diffusion starts is defined to be
the closest pixel to the median of all pixels that is inside
the mask.

masks_to_flows_gpu(masks[, device]) convert masks to flows using diffusion from center pixel
Center of masks where diffusion starts is defined us-
ing COM :param masks: labelled masks 0=NO masks;
1,2,...=mask labels :type masks: int, 2D or 3D array

remove_bad_flow_masks(masks, flows[, ...]) remove masks which have inconsistent flows
steps2D(p, dP, inds, niter[, omni, calc_trace]) run dynamics of pixels to recover masks in 2D
steps2D_interp(p, dP, niter[, use_gpu, ...])

steps3D(p, dP, inds, niter) run dynamics of pixels to recover masks in 3D

compute_masks

cellpose_omni.dynamics.compute_masks(dP, cellprob, bd=None, p=None, inds=None, niter=200,
mask_threshold=0.0, diam_threshold=12.0, flow_threshold=0.4,
interp=True, do_3D=False, min_size=15, resize=None,
verbose=False, use_gpu=False, device=None, nclasses=3,
calc_trace=False)

compute masks using dynamics from dP, cellprob, and boundary

follow_flows

cellpose_omni.dynamics.follow_flows(dP, mask=None, inds=None, niter=200, interp=True, use_gpu=True,
device=None, omni=False, calc_trace=False)

define pixels and run dynamics to recover masks in 2D

Pixels are meshgrid. Only pixels with non-zero cell-probability are used (as defined by inds)

Parameters

• dP (float32, 3D or 4D array) -- flows [axis x Ly x Lx] or [axis x Lz x Ly x Lx]

• mask ((optional, default None)) -- pixel mask to seed masks. Useful when flows have
low magnitudes.

• niter (int (optional, default 200)) -- number of iterations of dynamics to run

• interp (bool (optional, default True)) -- interpolate during 2D dynamics (not
available in 3D) (in previous versions + paper it was False)
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• use_gpu (bool (optional, default False)) -- use GPU to run interpolated dynamics
(faster than CPU)

Returns
p -- final locations of each pixel after dynamics

Return type
float32, 3D array

get_masks

cellpose_omni.dynamics.get_masks(p, iscell=None, rpad=20, flows=None, threshold=0.4, use_gpu=False,
device=None)

create masks using pixel convergence after running dynamics

Makes a histogram of final pixel locations p, initializes masks at peaks of histogram and extends the masks from
the peaks so that they include all pixels with more than 2 final pixels p. Discards masks with flow errors greater
than the threshold.

Parameters

• p (float32, 3D or 4D array) -- final locations of each pixel after dynamics, size [axis
x Ly x Lx] or [axis x Lz x Ly x Lx].

• iscell (bool, 2D or 3D array) -- if iscell is not None, set pixels that are iscell False to
stay in their original location.

• rpad (int (optional, default 20)) -- histogram edge padding

• threshold (float (optional, default 0.4)) -- masks with flow error greater than
threshold are discarded (if flows is not None)

• flows (float, 3D or 4D array (optional, default None)) -- flows [axis x Ly x
Lx] or [axis x Lz x Ly x Lx]. If flows is not None, then masks with inconsistent flows are
removed using remove_bad_flow_masks.

Returns
M0 -- masks with inconsistent flow masks removed, 0=NO masks; 1,2,...=mask labels, size [Ly
x Lx] or [Lz x Ly x Lx]

Return type
int, 2D or 3D array

labels_to_flows

cellpose_omni.dynamics.labels_to_flows(labels, files=None, use_gpu=False, device=None,
redo_flows=False, links=None, dim=2)

convert labels (list of masks or flows) to flows for training model

if files is not None, flows are saved to files to be reused

Parameters
labels (list of ND-arrays) -- labels[k] can be 2D or 3D, if [3 x Ly x Lx] then it is assumed
that flows were precomputed. Otherwise labels[k][0] or labels[k] (if 2D) is used to create flows
and cell probabilities.

Returns
flows -- flows[k][0] is labels[k], flows[k][1] is cell distance transform, flows[k][2] is Y flow,
flows[k][3] is X flow, and flows[k][4] is heat distribution
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Return type
list of [4 x Ly x Lx] arrays

map_coordinates

cellpose_omni.dynamics.map_coordinates(I, yc, xc, Y)
bilinear interpolation of image 'I' in-place with ycoordinates yc and xcoordinates xc to Y

Parameters

• I (C x Ly x Lx) --

• yc (ni) -- new y coordinates

• xc (ni) -- new x coordinates

• Y (C x ni) -- I sampled at (yc,xc)

masks_to_flows

cellpose_omni.dynamics.masks_to_flows(masks, use_gpu=False, device=None)
convert masks to flows using diffusion from center pixel

Center of masks where diffusion starts is defined to be the closest pixel to the median of all pixels that is inside
the mask. Result of diffusion is converted into flows by computing the gradients of the diffusion density map.

Parameters
masks (int, 2D or 3D array) -- labelled masks 0=NO masks; 1,2,...=mask labels

Returns

• mu (float, 3D or 4D array) -- flows in Y = mu[-2], flows in X = mu[-1]. if masks are 3D,
flows in Z = mu[0].

• mu_c (float, 2D or 3D array) -- for each pixel, the distance to the center of the mask in which
it resides

masks_to_flows_cpu

cellpose_omni.dynamics.masks_to_flows_cpu(masks, device=None)
convert masks to flows using diffusion from center pixel Center of masks where diffusion starts is defined to be
the closest pixel to the median of all pixels that is inside the mask. Result of diffusion is converted into flows by
computing the gradients of the diffusion density map. :param masks: labelled masks 0=NO masks; 1,2,...=mask
labels :type masks: int, 2D array

Returns

• mu (float, 3D array) -- flows in Y = mu[-2], flows in X = mu[-1]. if masks are 3D, flows in
Z = mu[0].

• mu_c (float, 2D array) -- for each pixel, the distance to the center of the mask in which it
resides
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masks_to_flows_gpu

cellpose_omni.dynamics.masks_to_flows_gpu(masks, device=None)
convert masks to flows using diffusion from center pixel Center of masks where diffusion starts is defined using
COM :param masks: labelled masks 0=NO masks; 1,2,...=mask labels :type masks: int, 2D or 3D array

Returns

• mu (float, 3D or 4D array) -- flows in Y = mu[-2], flows in X = mu[-1]. if masks are 3D,
flows in Z = mu[0].

• mu_c (float, 2D or 3D array) -- for each pixel, the distance to the center of the mask in which
it resides

remove_bad_flow_masks

cellpose_omni.dynamics.remove_bad_flow_masks(masks, flows, threshold=0.4, use_gpu=False,
device=None)

remove masks which have inconsistent flows

Uses metrics.flow_error to compute flows from predicted masks and compare flows to predicted flows from
network. Discards masks with flow errors greater than the threshold.

Parameters

• masks (int, 2D or 3D array) -- labelled masks, 0=NO masks; 1,2,...=mask labels, size
[Ly x Lx] or [Lz x Ly x Lx]

• flows (float, 3D or 4D array) -- flows [axis x Ly x Lx] or [axis x Lz x Ly x Lx]

• threshold (float (optional, default 0.4)) -- masks with flow error greater than
threshold are discarded.

Returns
masks -- masks with inconsistent flow masks removed, 0=NO masks; 1,2,...=mask labels, size
[Ly x Lx] or [Lz x Ly x Lx]

Return type
int, 2D or 3D array

steps2D

cellpose_omni.dynamics.steps2D(p, dP, inds, niter, omni=False, calc_trace=False)
run dynamics of pixels to recover masks in 2D

Euler integration of dynamics dP for niter steps

Parameters

• p (float32, 3D array) -- pixel locations [axis x Ly x Lx] (start at initial meshgrid)

• dP (float32, 3D array) -- flows [axis x Ly x Lx]

• inds (int32, 2D array) -- non-zero pixels to run dynamics on [npixels x 2]

• niter (int32) -- number of iterations of dynamics to run

Returns
p -- final locations of each pixel after dynamics
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Return type
float32, 3D array

steps2D_interp

cellpose_omni.dynamics.steps2D_interp(p, dP, niter, use_gpu=False, device=None, omni=False,
calc_trace=False)

steps3D

cellpose_omni.dynamics.steps3D(p, dP, inds, niter)
run dynamics of pixels to recover masks in 3D

Euler integration of dynamics dP for niter steps

Parameters

• p (float32, 4D array) -- pixel locations [axis x Lz x Ly x Lx] (start at initial meshgrid)

• dP (float32, 4D array) -- flows [axis x Lz x Ly x Lx]

• inds (int32, 2D array) -- non-zero pixels to run dynamics on [npixels x 3]

• niter (int32) -- number of iterations of dynamics to run

Returns
p -- final locations of each pixel after dynamics

Return type
float32, 4D array
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14.2.9 cellpose_omni.transforms

average_tiles(y, ysub, xsub, Ly, Lx) average results of network over tiles
convert_image(x, channels[, channel_axis, ...]) return image with z first, channels last and normalized

intensities
make_tiles(imgi[, bsize, augment, tile_overlap]) make tiles of image to run at test-time
move_axis(img[, m_axis, first]) move axis m_axis to first or last position
move_axis_new(a, axis, pos) Move ndarray axis to new location, preserving order of

other axes.
move_min_dim(img[, force]) move minimum dimension last as channels if < 10, or

force==True
normalize99(Y[, lower, upper, omni]) normalize image so 0.0 is 0.01st percentile and 1.0 is

99.99th percentile
normalize_field(mu[, omni])

normalize_img(img[, axis, invert, omni]) normalize each channel of the image so that so that
0.0=1st percentile and 1.0=99th percentile of image in-
tensities

original_random_rotate_and_resize(X[, Y, ...]) augmentation by random rotation and resizing X and Y
are lists or arrays of length nimg, with dims channels x
Ly x Lx (channels optional)

pad_image_ND(img0[, div, extra, dim]) pad image for test-time so that its dimensions are a mul-
tiple of 16 (2D or 3D)

random_rotate_and_resize(X[, Y, ...]) augmentation by random rotation and resizing
reshape(data[, channels, chan_first, ...]) reshape data using channels
reshape_and_normalize_data(train_data[, ...]) inputs converted to correct shapes for training and

rescaled so that 0.0=1st percentile and 1.0=99th per-
centile of image intensities in each channel

reshape_train_test(train_data, train_labels, ...) check sizes and reshape train and test data for training
resize_image(img0[, Ly, Lx, rsz, ...]) resize image for computing flows / unresize for comput-

ing dynamics
unaugment_tiles(y[, unet]) reverse test-time augmentations for averaging
update_axis(m_axis, to_squeeze, ndim)

average_tiles

cellpose_omni.transforms.average_tiles(y, ysub, xsub, Ly, Lx)
average results of network over tiles

Parameters

• y (float, [ntiles x nclasses x bsize x bsize]) -- output of cellpose network for
each tile

• ysub (list) -- list of arrays with start and end of tiles in Y of length ntiles

• xsub (list) -- list of arrays with start and end of tiles in X of length ntiles

• Ly (int) -- size of pre-tiled image in Y (may be larger than original image if image size is
less than bsize)

• Lx (int) -- size of pre-tiled image in X (may be larger than original image if image size is
less than bsize)
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Returns
yf -- network output averaged over tiles

Return type
float32, [nclasses x Ly x Lx]

convert_image

cellpose_omni.transforms.convert_image(x, channels, channel_axis=None, z_axis=None, do_3D=False,
normalize=True, invert=False, nchan=2, dim=2, omni=False)

return image with z first, channels last and normalized intensities

make_tiles

cellpose_omni.transforms.make_tiles(imgi, bsize=224, augment=False, tile_overlap=0.1)
make tiles of image to run at test-time

if augmented, tiles are flipped and tile_overlap=2.

• original

• flipped vertically

• flipped horizontally

• flipped vertically and horizontally

Parameters

• imgi (float32) -- array that's nchan x Ly x Lx

• bsize (float (optional, default 224)) -- size of tiles

• augment (bool (optional, default False)) -- flip tiles and set tile_overlap=2.

• tile_overlap (float (optional, default 0.1)) -- fraction of overlap of tiles

Returns

• IMG (float32) -- array that's ntiles x nchan x bsize x bsize

• ysub (list) -- list of arrays with start and end of tiles in Y of length ntiles

• xsub (list) -- list of arrays with start and end of tiles in X of length ntiles

move_axis

cellpose_omni.transforms.move_axis(img, m_axis=- 1, first=True)
move axis m_axis to first or last position
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move_axis_new

cellpose_omni.transforms.move_axis_new(a, axis, pos)
Move ndarray axis to new location, preserving order of other axes.

move_min_dim

cellpose_omni.transforms.move_min_dim(img, force=False)
move minimum dimension last as channels if < 10, or force==True

normalize99

cellpose_omni.transforms.normalize99(Y, lower=0.01, upper=99.99, omni=False)
normalize image so 0.0 is 0.01st percentile and 1.0 is 99.99th percentile

normalize_field

cellpose_omni.transforms.normalize_field(mu, omni=False)

normalize_img

cellpose_omni.transforms.normalize_img(img, axis=- 1, invert=False, omni=False)
normalize each channel of the image so that so that 0.0=1st percentile and 1.0=99th percentile of image intensities

optional inversion

Parameters

• img (ND-array (at least 3 dimensions)) --

• axis (channel axis to loop over for normalization) --

Returns
img -- normalized image of same size

Return type
ND-array, float32

original_random_rotate_and_resize

cellpose_omni.transforms.original_random_rotate_and_resize(X, Y=None, scale_range=1.0, xy=(224,
224), do_flip=True, rescale=None,
unet=False)

augmentation by random rotation and resizing X and Y are lists or arrays of length nimg, with dims channels x
Ly x Lx (channels optional)

Parameters

• X (LIST of ND-arrays, float) -- list of image arrays of size [nchan x Ly x Lx] or [Ly x
Lx]

14.2. Modules 125



omnipose, Release 1.0.6-26-g260e4d3

• Y (LIST of ND-arrays, float (optional, default None)) -- list of image labels
of size [nlabels x Ly x Lx] or [Ly x Lx]. The 1st channel of Y is always nearest-neighbor
interpolated (assumed to be masks or 0-1 representation). If Y.shape[0]==3 and not unet,
then the labels are assumed to be [cell probability, Y flow, X flow]. If unet, second channel
is dist_to_bound.

• scale_range (float (optional, default 1.0)) -- Range of resizing of images for
augmentation. Images are resized by (1-scale_range/2) + scale_range * np.random.rand()

• xy (tuple, int (optional, default (224,224))) -- size of transformed images to
return

• do_flip (bool (optional, default True)) -- whether or not to flip images horizon-
tally

• rescale (array, float (optional, default None)) -- how much to resize images
by before performing augmentations

• unet (bool (optional, default False)) --

Returns

• imgi (ND-array, float) -- transformed images in array [nimg x nchan x xy[0] x xy[1]]

• lbl (ND-array, float) -- transformed labels in array [nimg x nchan x xy[0] x xy[1]]

• scale (array, float) -- amount by which each image was resized

pad_image_ND

cellpose_omni.transforms.pad_image_ND(img0, div=16, extra=1, dim=2)
pad image for test-time so that its dimensions are a multiple of 16 (2D or 3D)

Parameters

• img0 (ND-array) -- image of size [nchan (x Lz) x Ly x Lx]

• div (int (optional, default 16)) --

Returns

• I (ND-array) -- padded image

• ysub (array, int) -- yrange of pixels in I corresponding to img0

• xsub (array, int) -- xrange of pixels in I corresponding to img0

random_rotate_and_resize

cellpose_omni.transforms.random_rotate_and_resize(X, Y=None, scale_range=1.0, gamma_range=[0.5,
4], tyx=None, do_flip=True, rescale=None,
unet=False, inds=None, omni=False, dim=2,
nchan=1, nclasses=3, device=None)

augmentation by random rotation and resizing

X and Y are lists or arrays of length nimg, with dims channels x Ly x Lx (channels optional)

Parameters

• X (LIST of ND-arrays, float) -- list of image arrays of size [nchan x Ly x Lx] or [Ly x
Lx]
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• Y (LIST of ND-arrays, float (optional, default None)) -- list of image labels
of size [nlabels x Ly x Lx] or [Ly x Lx]. The 1st channel of Y is always nearest-neighbor
interpolated (assumed to be masks or 0-1 representation). If Y.shape[0]==3 and not unet,
then the labels are assumed to be [cell probability, Y flow, X flow]. If unet, second channel
is dist_to_bound.

• scale_range (float (optional, default 1.0)) -- Range of resizing of images for
augmentation. Images are resized by (1-scale_range/2) + scale_range * np.random.rand()

• gamma_range (float (optional, default 0.5)) -- Images are gamma-adjusted
im**gamma for gamma in (1-gamma_range,1+gamma_range)

• xy (tuple, int (optional, default (224,224))) -- size of transformed images to
return

• do_flip (bool (optional, default True)) -- whether or not to flip images horizon-
tally

• rescale (array, float (optional, default None)) -- how much to resize images
by before performing augmentations

• unet (bool (optional, default False)) --

Returns

• imgi (ND-array, float) -- transformed images in array [nimg x nchan x xy[0] x xy[1]]

• lbl (ND-array, float) -- transformed labels in array [nimg x nchan x xy[0] x xy[1]]

• scale (array, float) -- amount each image was resized by

reshape

cellpose_omni.transforms.reshape(data, channels=[0, 0], chan_first=False, channel_axis=0)
reshape data using channels

Parameters

• data (numpy array that's (Z x ) Ly x Lx x nchan) -- if data.ndim==8 and
data.shape[0]<8, assumed to be nchan x Ly x Lx

• channels (list of int of length 2 (optional, default [0,0])) -- First ele-
ment of list is the channel to segment (0=grayscale, 1=red, 2=green, 3=blue). Second ele-
ment of list is the optional nuclear channel (0=none, 1=red, 2=green, 3=blue). For instance,
to train on grayscale images, input [0,0]. To train on images with cells in green and nuclei in
blue, input [2,3].

• channel_axis (int, default 0) -- the axis that corresponds to channels (usually 0 or
-1)

Returns
data

Return type
numpy array that's (Z x ) Ly x Lx x nchan (if chan_first==False)
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reshape_and_normalize_data

cellpose_omni.transforms.reshape_and_normalize_data(train_data, test_data=None, channels=None,
channel_axis=0, normalize=True, omni=False,
dim=2)

inputs converted to correct shapes for training and rescaled so that 0.0=1st percentile and 1.0=99th percentile of
image intensities in each channel

Parameters

• train_data (list of ND-arrays, float) -- list of training images of size [Ly x Lx],
[nchan x Ly x Lx], or [Ly x Lx x nchan]

• test_data (list of ND-arrays, float (optional, default None)) -- list of
testing images of size [Ly x Lx], [nchan x Ly x Lx], or [Ly x Lx x nchan]

• channels (list of int of length 2 (optional, default None)) -- First element
of list is the channel to segment (0=grayscale, 1=red, 2=green, 3=blue). Second element of
list is the optional nuclear channel (0=none, 1=red, 2=green, 3=blue). For instance, to train
on grayscale images, input [0,0]. To train on images with cells in green and nuclei in blue,
input [2,3].

• normalize (bool (optional, True)) -- normalize data so 0.0=1st percentile and
1.0=99th percentile of image intensities in each channel

Returns

• train_data (list of ND-arrays, float) -- list of training images of size [2 x Ly x Lx]

• test_data (list of ND-arrays, float (optional, default None)) -- list of testing images of size
[2 x Ly x Lx]

• run_test (bool) -- whether or not test_data was correct size and is useable during training

reshape_train_test

cellpose_omni.transforms.reshape_train_test(train_data, train_labels, test_data, test_labels, channels,
channel_axis=0, normalize=True, dim=2, omni=False)

check sizes and reshape train and test data for training

resize_image

cellpose_omni.transforms.resize_image(img0, Ly=None, Lx=None, rsz=None, interpolation=1,
no_channels=False)

resize image for computing flows / unresize for computing dynamics

Parameters

• img0 (ND-array) -- image of size [Y x X x nchan] or [Lz x Y x X x nchan] or [Lz x Y x X]

• Ly (int, optional) --

• Lx (int, optional) --

• rsz (float, optional) -- resize coefficient(s) for image; if Ly is None then rsz is used

• interpolation (cv2 interp method (optional, default cv2.INTER_LINEAR))
--
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Returns
imgs -- image of size [Ly x Lx x nchan] or [Lz x Ly x Lx x nchan]

Return type
ND-array

unaugment_tiles

cellpose_omni.transforms.unaugment_tiles(y, unet=False)
reverse test-time augmentations for averaging

Parameters

• y (float32) -- array that's ntiles_y x ntiles_x x chan x Ly x Lx where chan = (dY, dX, cell
prob)

• unet (bool (optional, False)) -- whether or not unet output or cellpose output

Returns
y

Return type
float32

update_axis

cellpose_omni.transforms.update_axis(m_axis, to_squeeze, ndim)
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CHAPTER

FIFTEEN

CLI

See command line examples for typical use cases.

usage: omnipose [image args] [model args] [...]

15.1 input image arguments

--dir folder containing data on which to run or train

--look_one_level_down run processing on all subdirectories of current folder

--mxnet use mxnet

--img_filter filter images by this suffix

--channel_axis axis of image which corresponds to image channels

--z_axis axis of image which corresponds to Z dimension

--chan channel to segment; 0: GRAY, 1: RED, 2: GREEN, 3: BLUE. Default: 0

--chan2 nuclear channel (if cyto, optional); 0: NONE, 1: RED, 2: GREEN, 3: BLUE.
Default: 0

--invert invert grayscale channel

--all_channels use all channels in image if using own model and images with special channels

--dim number of spatiotemporal dimensions of images (not counting channels). Default:
2

15.2 model arguments

--pretrained_model model to use

--unet run standard unet instead of cellpose flow output

--nclasses number of prediction classes for model (3 for Cellpose, 4 for Omnipose boundary
field)

--nchan number of channels on which model is trained

--kernel_size kernel size for maskpool. Starts at 2, higher means more aggressive downsam-
pling.
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15.3 algorithm arguments

--omni Omnipose algorithm (disabled by default)

--affinity_seg use new affinity segmentation algorithm (disabled by default)

--cluster DBSCAN clustering. Reduces oversegmentation of thin features (disabled by de-
fault)

--no_suppress Euler integration 1/t suppression reduces oversegmentation but can give under-
segmentation in 3D; this flag disables it.

--fast_mode make code run faster by turning off 4 network averaging and resampling

--no_resample disable dynamics on full image (makes algorithm faster for images with large di-
ameters)

--no_net_avg make code run faster by only running 1 network

--no_interp do not interpolate when running dynamics (was default)

--do_3D process images as 3D stacks of images (nplanes x nchan x Ly x Lx

--diameter cell diameter, 0 disables unless sizemodel is present. Default: 0.0

--rescale image rescaling factor (r = diameter / model diameter)

--stitch_threshold compute masks in 2D then stitch together masks with IoU>0.9 across planes

--flow_threshold flow error threshold, 0 turns off this optional QC step. Default: 0.4

--mask_threshold mask threshold, default is 0, decrease to find more and larger masks

--niter Number of Euler iterations, enter value to override Omnipose diameter estimation
(under/over-segment)

--anisotropy anisotropy of volume in 3D

--diam_threshold cell diameter threshold for upscaling before mask rescontruction, default 12

--exclude_on_edges discard masks which touch edges of image

--min_size minimum size for masks, helps if small debris is labeled

--max_size maximum size for masks, helps if background patches are labeled

15.4 output arguments

--save_png save masks as png

--save_tif save masks as tif

--no_npy suppress saving of npy

--savedir folder to which segmentation results will be saved (defaults to input image direc-
tory)

--dir_above save output folders adjacent to image folder instead of inside it (off by default)

--in_folders flag to save output in folders (off by default)

--save_flows whether or not to save RGB images of flows when masks are saved (disabled by
default)
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--save_outlines whether or not to save RGB outline images when masks are saved (disabled by
default)

--save_ncolor whether or not to save minimal "n-color" masks (disabled by default

--save_txt flag to enable txt outlines for ImageJ (disabled by default)

--transparency store flows with background transparent (alpha=flow magnitude) (disabled by de-
fault)

15.5 training arguments

--train train network using images in dir

--train_size train size network at end of training

--mask_filter end string for masks to run on. Default: "_masks"

--test_dir folder containing test data (optional)

--learning_rate learning rate. Default: 0.2

--n_epochs number of epochs. Default: 500

--batch_size batch size. Default: 8

--num_workers number of dataloader workers. Default: 0

--dataloader Use pytorch dataloader instead of older manual loading code.

--min_train_masks minimum number of masks a training image must have to be used. Default: 1

--residual_on use residual connections

--style_on use style vector

--concatenation concatenate downsampled layers with upsampled layers (off by default which
means they are added)

--save_every number of epochs to skip between saves. Default: 100

--save_each save the model under a different filename per --save_every epoch for later com-
parsion

--RAdam use RAdam instead of SGD

--checkpoint turn on checkpoints to reduce memory usage

--dropout Use dropout in training

--tyx list of yx, zyx, or tyx dimensions for training

--links Search and use link files for multi-label objects.

--amp Use Automatic Mixed Precision.

--affinity_field Use summed affinity instead of distance field.
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15.6 hardware arguments

--use_gpu use gpu if torch or mxnet with cuda installed

--check_mkl check if mkl working

--mkldnn for mxnet, force MXNET_SUBGRAPH_BACKEND = "MKLDNN"

15.7 development arguments

--verbose flag to output extra information (e.g. diameter metrics) for debugging and fine-
tuning parameters

--testing flag to suppress CLI user confirmation for saving output; for test scripts

--timing flag to output timing information for select modules
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AFFINITY SEGMENTATION

This is the term that I think best describes encoding an image segmentation it its most general, information-dense form:
an affinity graph. To explain what this is, we will first consider two cells in contact.

16.1 The hierarchy of segmentation encoding

1 # Load image and masks
2 import string
3 import matplotlib as mpl
4 import matplotlib.pyplot as plt
5 mpl.rcParams['figure.dpi'] = 600
6 # mpl.rcParams['facecolor'] = [0]*4
7

8 plt.rc('figure', facecolor=[0]*4)
9

10 plt.style.use('dark_background')
11 mpl.use('Agg')
12

13 %matplotlib inline
14

15 from pathlib import Path
16 import os
17 from cellpose_omni import io, plot
18 import fastremap
19

20 import omnipose
21 omnidir = Path(omnipose.__file__).parent.parent
22 basedir = os.path.join(omnidir,'docs','_static')
23 # name = 'ecoli_phase'
24 name = 'ecoli'
25 ext = '.tif'
26 image = io.imread(os.path.join(basedir,name+ext))
27 masks = io.imread(os.path.join(basedir,name+'_labels'+ext))
28 slc = omnipose.utils.crop_bbox(masks>0,pad=0)[0]
29 masks = fastremap.renumber(masks[slc])[0]
30 image = image[slc]
31

32 # Plot a few things
33

(continues on next page)
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34 import matplotlib.pyplot as plt
35 from omnipose.plot import apply_ncolor, plot_edges, imshow
36 from omnipose import utils
37 import numpy as np
38 # import matplotlib_inline
39 # matplotlib_inline.backend_inline.set_matplotlib_formats('svg')
40

41 from mpl_toolkits.axes_grid1.inset_locator import zoomed_inset_axes
42 from mpl_toolkits.axes_grid1.inset_locator import inset_axes
43 from mpl_toolkits.axes_grid1.inset_locator import mark_inset
44 from matplotlib.patches import Patch
45

46

47

48 images = [image, masks>0, apply_ncolor(masks), masks>0]
49 labels = ['Image\n(phase contrast)', 'Semantic\nsegmentation',
50 'Instance\nsegmentation', 'Affinity\nsegmentation']
51

52 # Set up the figure and subplots
53 N = len(images)
54

55 f = 1
56 Y,X = masks.shape[-2:]
57 M = 1
58

59 h,w = masks.shape[-2:]
60

61 sf = w
62 p = 0.0035*w # needs to be defined as fraction of width for aspect ratio to work?
63 h /= sf
64 w /= sf
65

66 # Calculate positions of subplots
67 left = np.array([i*(w+p) for i in range(N)])*1.
68 bottom = np.array([0]*N)*1.
69 width = np.array([w]*N)*1.
70 height = np.array([h]*N)*1.
71

72 max_w = left[-1]+width[-1]
73 max_h = bottom[-1]+height[-1]
74

75 sw = max_w
76 sh = max_h
77

78 sf = max(sw,sh)
79 left /= sw
80 bottom /= sh
81 width /= sw
82 height /= sh
83

84 # Create figure
85 s = 6

(continues on next page)
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86 fig = plt.figure(figsize=(s,s*sh/sw), frameon=False, dpi=300)
87 # fig.patch.set_facecolor([0]*4)
88

89 # Add subplots
90 axes = []
91 for i in range(N):
92 ax = fig.add_axes([left[i], bottom[i], width[i], height[i]])
93 axes.append(ax)
94

95 # Iterate over each subplot and set the image, label, and formatting
96 c = [0.5]*3
97 fontsize = 11
98

99 # bounds = [40,20,10,10]
100 bounds = [11,22,8,8]
101 h,w = masks.shape[-2:]
102 extent = np.array([0,w,0,h])#-0.5
103

104

105 sy,sx,wy,wx = bounds
106 zoomslc = tuple([slice(sy,sy+wy),slice(sx,sx+wx)])
107

108

109 cmap='inferno'
110

111 zoom = 3
112 # zoom, f = 5, 0.75
113 color = [.75]*3
114 edgecol = [1/3]*3
115 edgecol = [.75]*3+[.5]
116 axcol = [0.5]*3
117 # edgecol = [.5,.75,0]+[2/3]
118

119 lw= .2
120 labelpad = 3
121 fontsize2 = 8
122

123 do_labels = 0
124

125 for i, ax in enumerate(axes):
126

127 # inset axes
128 axins = zoomed_inset_axes(ax, zoom, loc='lower left',
129 bbox_to_anchor=(-wx/w,-2*wy/h),
130 # bbox_to_anchor=(-wx/w*zoom/2,-zoom*wy/h),
131 # bbox_to_anchor=(-f*zoom*wy/h,-f*wx/w*zoom),
132

133

134 bbox_transform=ax.transAxes)
135

136 if i==N-1:
137 # ax.invert_yaxis()

(continues on next page)

16.1. The hierarchy of segmentation encoding 137



omnipose, Release 1.0.6-26-g260e4d3

(continued from previous page)

138

139 dim = masks.ndim
140 shape = masks.shape
141 steps, inds, idx, fact, sign = utils.kernel_setup(dim)
142 coords = np.nonzero(masks)
143 affinity_graph = omnipose.core.masks_to_affinity(masks, coords, steps,
144 inds, idx, fact, sign, dim)
145 neighbors = utils.get_neighbors(coords,steps,dim,shape)
146 summed_affinity, affinity_cmap = plot_edges(shape,affinity_graph,neighbors,

→˓coords,
147 figsize=1,fig=fig,ax=ax,

→˓extent=extent,
148 edgecol=edgecol,cmap=cmap,

→˓linewidth=lw
149 )
150

151

152 axins.invert_yaxis()
153 ax.invert_yaxis()
154

155 summed_affinity, affinity_cmap = plot_edges(shape,affinity_graph,neighbors,
→˓coords,

156 figsize=1,fig=fig,ax=axins,
157 extent=extent,
158 edgecol=edgecol,linewidth=lw*zoom,cmap=cmap,
159 bounds=bounds
160 )
161

162 axins.set_xlim(zoomslc[1].start, zoomslc[1].stop)
163 axins.set_ylim(h-zoomslc[0].start, h-zoomslc[0].stop)
164

165

166 loc1,loc2 = 4,2
167 patch, pp1, pp2 = mark_inset(ax, axins, loc1=loc1, loc2=loc2, fc="none",␣

→˓ec=color+[1],zorder=2)
168 pp1.loc1 = 4
169 pp1.loc2 = 1
170 pp2.loc1 = 2
171 pp2.loc2 = 3
172

173

174 N = affinity_cmap.N
175 colors = affinity_cmap.colors
176

177 cax = inset_axes(ax, width="50%", height="100%", loc='lower right',
178 bbox_to_anchor=(-.05, -0.7, 1, 1), bbox_transform=ax.transAxes,
179 borderpad=0)
180

181 # Display the color swatches as an image
182 n = np.arange(3,9)
183 Nc = len(n)
184 cax.imshow(affinity_cmap(n.reshape(1,Nc)))#,vmin=n[0]-1,vmax=n[-1]+1)

(continues on next page)
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185

186 # Set the y ticks and tick labels
187 cax.set_xticks(np.arange(Nc))
188 nums = [str(i) for i in n]
189 cax.set_xticklabels(nums,c=c,fontsize=fontsize2)
190 cax.tick_params(axis='both', which='both', length=0, pad=labelpad)
191 cax.set_yticks([])
192

193 wa = .07
194 ha = .05
195 cax.set_aspect(ha/wa)
196 cax.set_title('Connections',c=c,fontsize=fontsize2,pad=labelpad)
197 for spine in cax.spines.values():
198 spine.set_color(None)
199 else:
200

201 ax.imshow(images[i],cmap='gray',extent=extent)
202 # axins.imshow(images[i][zoomslc],extent=extent,origin='upper')
203 axins.imshow(images[i],extent=extent,cmap='gray')
204 # axins.imshow(images[i])#,extent=extent)
205

206 if i>0:
207 imp = masks[::-1][zoomslc]
208 if i==1:
209 imp = imp>0
210 for (j,k),label in np.ndenumerate(imp):
211 axins.text(k+sx+0.5, j+sy+0.45, int(label), ha='center', va='center',␣

→˓color=[(label==0)*0.5]*3,fontsize=4)
212

213

214 axins.set_xlim(zoomslc[1].start, zoomslc[1].stop)
215 axins.set_ylim(zoomslc[0].start, zoomslc[0].stop)
216

217 mark_inset(ax, axins, loc1=2, loc2=4, fc="none", ec=color+[1],zorder=2)
218

219

220 if do_labels:
221 ax.set_title(labels[i],c=c,fontsize=fontsize,fontweight="bold",pad=5)
222 else:
223 ax.annotate(string.ascii_lowercase[i], xy=(-0.1, 1), xycoords='axes fraction',
224 xytext=(0, 0), textcoords='offset points', va='top', c=axcol,
225 fontsize=fontsize)
226

227 ax.axis('off')
228 axins.set_xticks([])
229 axins.set_yticks([])
230 axins.set_facecolor([0]*4)
231

232 for spine in axins.spines.values():
233 spine.set_color(color)
234

235

(continues on next page)

16.1. The hierarchy of segmentation encoding 139



omnipose, Release 1.0.6-26-g260e4d3

(continued from previous page)

236 # plt.subplots_adjust(wspace=0.15)
237 fig.patch.set_facecolor([0]*4)
238

239 # Display the plot
240 plt.show()

Semantic segmentation sorts pixels into semantic classes. This is often just two classes, or binary classification: fore-
ground and background. In this case, foreground is cell and background is media. As you can see, semantic segmenta-
tion does not discern between adjacent instances of foreground objects. We store a semantic segmentation as a binary
image file with the same dimensions as the image itself, with foreground pixels labeled True (1) and background False
(0).

Instance segmentation assigns a unique integer to the pixels each instance of an object - in this case, each cell. This
is also conveniently stored as an image file, typically uint8 (unsigned 8-bit integer) for up to 28 − 1 = 255 labels or
uint16 (unsigned 16-bit integer) for up to 216 − 1 = 65535 labels. Signed and/or unsigned 32- or 64-bit formats may
also be used, but your OS may not be able to preview these files in its native file manager.

Note: Some instance labels use -1 as an "ignore" label. This can be in conflict with several tasks from indexing to
label formatting, which assume unsigned integers, so care must be taken when working with signed formats (int) versus
unsigned (uint).

16.2 Bad labels I: Semantic islands to instance labels

Semantic segmentation can be converted into instance segmentation, and this forms the basis of many instance seg-
mentation pipelines. The general steps are:

1. Pre-process image: traditional filtering/blurring/feature extraction or DNN transformation

2. Threshold processed image: adaptive techniques are usually used on the pre-processed image to ensure that
the majority of objects pixels are identified despite variations within an image and among images in a dataset.
Importantly, object boundaries must not be identified as foreground. This allows each object to be associated
with a unique island of foreground pixels.

3. These unique blobs are identified using connected components labeling. This is the process of building an
affinity graph, where pixels are nodes and edges are formed between any adjacent foreground pixels. Adjacency
can be defined most narrowly by sharing edges (1-connected in Python, 4-connected in MATLAB) or more
broadly by sharing either edges or vertices (2-connected in Python, 8-connected in MATLAB). The graph is
then traversed to find all connected components of the graph.
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These points are illustrated below. By simulating the amount of foreground pixels detected by filtering+thresholding,
we see that is is impossible to distinguish between the two cells until much of the boundary is lost, particularly when
using 2-connectivity.

1 import skimage.measure
2

3 connectivity = [1,2]
4 cutoffs = [4,5,6]
5 row_labels = ['{}-connected'.format(i) for i in connectivity]
6 col_labels = ['cutoff = {}'.format(i) for i in cutoffs]
7 # Define the grid dimensions
8 num_rows = len(row_labels)
9 num_cols = len(col_labels)

10

11 # Create the grid of subplots
12

13 # f = .75
14 # dpi = mpl.rcParams['figure.dpi']
15 # Y,X = masks.shape[-2:]
16 # szX = max(X//dpi,2)*f
17 # szY = max(Y//dpi,2)*f
18 # fig, axes = plt.subplots(num_rows, num_cols,figsize=(szX*num_cols,szY*num_rows))
19

20

21

22

23 h,w = masks.shape[-2:]
24

25 sf = w
26 p = 0.05
27 h /= sf
28 w /= sf
29

30 # Calculate positions of subplots
31 N = num_cols
32 M = num_rows
33 left = np.array([5*p+i*(w+p) for i in range(N)]*M).flatten().astype(float)
34 # bottom = np.array([1.5*p]*N + [h+p]*N).flatten().astype(float)
35 bottom = np.array([h+p]*N+[3*p]*N).flatten().astype(float)
36 width = np.array([[w]*N]*M).flatten().astype(float)
37 height = np.array([[h]*N]*M).flatten().astype(float)
38

39 max_w = left[-1]+width[-1]
40 max_h = bottom[-1]+height[-1]
41

42 sw = max_w
43 sh = max_h
44

45 sf = max(sw,sh)
46 left /= sw
47 bottom /= sh
48 width /= sw
49 height /= sh

(continues on next page)
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50

51 # Create figure
52 s = 5
53 fig = plt.figure(figsize=(s,s*sh/sw), frameon=False, dpi=300,facecolor=[0]*4)
54 # fig.patch.set_facecolor([0]*4)
55

56 # Add subplots
57 axes = []
58 for i in range(N*M):
59 ax = fig.add_axes([left[i], bottom[i], width[i], height[i]])
60 ax.set_facecolor([0]*4)
61

62 axes.append(ax)
63

64

65 fig.patch.set_facecolor([0]*4)
66 color = [0.5]*3
67 # for row,conn in enumerate(connectivity):
68 # for col,cutoff in enumerate(cutoffs):
69

70 for i,ax in enumerate(axes):
71 row,col= np.unravel_index(i,(M,N))
72

73 cutoff = cutoffs[col]
74 conn = connectivity[row]
75

76

77 bin0 = summed_affinity>cutoff
78 msk0 = skimage.measure.label(bin0,connectivity=conn)
79 pic = apply_ncolor(msk0)
80

81

82 dim = masks.ndim
83 shape = masks.shape
84 steps, inds, idx, fact, sign = utils.kernel_setup(dim)
85 coords = np.nonzero(msk0)
86 affinity_graph = omnipose.core.masks_to_affinity(msk0, coords, steps,
87 inds, idx, fact, sign, dim)
88 neighbors = utils.get_neighbors(coords,steps,dim,shape)
89

90 #choose to plot cardinal connections only
91 step_inds = None if conn==2 else inds[1]
92

93 # index = np.ravel_multi_index([[row],[col]],(N,M))
94 # ax = axes[row*col]
95 ax.axis('off')
96

97 # ax.text(0,0,i)
98

99 plot_edges(shape,affinity_graph,neighbors,coords,figsize=1,extent=extent,
100 fig=fig,ax=ax,step_inds=step_inds,pic=pic,origin='lower',edgecol=[1,1,1,0.

→˓5])

(continues on next page)
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101

102 ax.invert_yaxis()
103

104 if i<N:
105 ax.annotate(col_labels[i], xy=(0.5, 1), xytext=(0, ax.xaxis.labelpad),
106 xycoords=ax.xaxis.label, textcoords='offset points',
107 ha='center', va='baseline',color=color,fontsize=fontsize)
108

109 if i%M==0:
110 ax.annotate(row_labels[row], xy=(0, 0), xytext=(-ax.yaxis.labelpad + 20, 0),
111 xycoords=ax.yaxis.label, textcoords='offset points',
112 ha='right', va='center', rotation=90,color=color,fontsize=fontsize)
113

114 plt.show()

Although such sloppy segmentation is good enough for some tasks, we have a better tools now. So in general, do not
use image thresholding for segmentation.

16.3 Bad labels II: Watershed lines

While we are on the topic, missing boundary pixels also frequently arise when applying the watershed transform. As
usually implemented, this ubiquitous operation returns a semantic classification of an image into watershed lines and
catchment basins. As you can tell by the above example, this means that distinct basins must be separated by a 1- or
2-connected watershed line, and therefore boundary pixels are always left unclassified.

There are implementations that allow users to return instance labels without the gaps let by watershed lines (e.g.,
skimage.segmentation.watershed), but I have yet to see a paper published using this method. Despite this fix,
watershed also tends to over-segment images (even when transformed by traditional filters or DNNs). So in general,
do not use watershed for instance segmentation.
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16.4 Bad labels III: Self-contact boundaries

Instance labels are good enough to fully describe a lot of objects. More precisely, there is a bijective map between
the affinity graph and the instance label matrix whenever all edge pixels are in contact with a non-self pixel. This
assumption fails in many interesting (and biologically relevant) scenarios, including bacterial microscopy. Consider
the following image containing one extremely filamentous cell and corresponding cell mask:

1 # read in files; this is an entire movie, but we will just be looking at the last frame
2 import tifffile
3

4 nm = 'long_10_2'
5 masks = tifffile.imread(os.path.join(basedir,nm+'_op_masks.tif'))
6 phase = tifffile.imread(os.path.join(basedir,nm+'_phase.tif'))
7 fluor = tifffile.imread(os.path.join(basedir,nm+'_fluor.tif'))
8 afnty = utils.load_nested_list(os.path.join(basedir,nm+'_affinity.npz'))
9

10 # make figure
11 import omnipose, cellpose_omni
12 im = phase[-1]
13 msk = masks[-1]
14

15 f = 1
16 c = [0.5]*3
17 fontsize=11
18

19 titles = [r'$\bf{image}$'+'\n(phase contrast)', r'$\bf{label}$'+'\n(single cell mask)', r
→˓'$\bf{boundary}$'+'\n(from cell mask)']

20 ol = cellpose_omni.utils.masks_to_outlines(msk,omni=True)
21 # outlines = np.stack([ol]*4,axis=-1)*0.5
22 images = [im,
23 omnipose.plot.apply_ncolor(msk),
24 omnipose.plot.apply_ncolor(ol,offset=.5)]
25

26

27

28 # Set up the figure and subplots
29 N = len(images)
30 h,w = im.shape
31

32 sf = h
33 p = 0.5 # needs to be defined as fraction of width for aspect ratio to work?
34

35

36 h,w = im.shape
37 extent = np.array([0,w,0,h])#-0.5
38 sy,sx,wy,wx = [h//2.5,w//3.6,40,40]
39 zoomslc = tuple([slice(sy,sy+wy),slice(sx,sx+wx)])
40 zoom = 5
41 bbox_to_anchor = (-(wx/w)*zoom/(1.25),-zoom/1.5*wy/h) # inset axis
42

43

44 asp = h/w
45

(continues on next page)
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46 h /= sf
47 w /= sf
48

49 oy,ox = np.abs(bbox_to_anchor)/2
50 # oy,ox = 0.,0.
51 # Calculate positions of subplots
52 left = np.array([ox+i*(w+p) for i in range(N)])*1.
53 bottom = np.array([oy]*N)*1.
54 width = np.array([w]*N)*1.
55 height = np.array([h]*N)*1.
56

57 max_w = left[-1]+width[-1]+ox
58 max_h = bottom[-1]+height[-1]+oy
59

60 sw = max_w
61 sh = max_h
62

63 sf = max(sw,sh)
64 left /= sw
65 bottom /= sh
66 width /= sw
67 height /= sh
68

69 # Create figure
70 s = 6.5
71 fig = plt.figure(figsize=(s,s*sh/sw), frameon=False, dpi=600)
72 # fig.patch.set_facecolor([0]*4)
73

74 # Add subplots
75 axes = []
76 for i in range(N):
77 ax = fig.add_axes([left[i], bottom[i], width[i], height[i]])
78 axes.append(ax)
79

80

81

82 lwa = 2/N # linewidth for axes
83 lw = lwa/20 # linewidth for affinity graph
84 labelpad = 2
85

86 for i, ax in enumerate(axes):
87

88 ax.imshow(images[i],cmap='gray',extent=extent)
89 ax.axis('off')
90

91

92

93 # inset axes....
94 # axins = ax.inset_axes([0.5, 0.5, 0.47, 0.47])
95 # axins = inset_axes(ax, 1,1 , loc=2, bbox_to_anchor=(.08, 0.35))
96 axins = zoomed_inset_axes(ax, zoom, loc='lower left',
97 # bbox_to_anchor=(1.1, 1.1),

(continues on next page)
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98 # bbox_to_anchor=(-.15,-.15),
99 bbox_to_anchor=bbox_to_anchor,

100 bbox_transform=ax.transAxes)
101

102

103

104 # axins.imshow(images[i][zoomslc],extent=extent,origin='upper')
105 axins.imshow(images[i],extent=extent,cmap='gray')
106 # axins.imshow(images[i])#,extent=extent)
107 axins.set_xlim(zoomslc[1].start, zoomslc[1].stop)
108 axins.set_ylim(zoomslc[0].start, zoomslc[0].stop)
109

110 mark_inset(ax, axins, loc1=2, loc2=4, fc="none", ec=color+[1], zorder=2, lw=lwa)
111 # axins.axis('off')
112 axins.set_xticks([])
113 axins.set_yticks([])
114 axins.set_facecolor([0]*4)
115

116

117 for spine in axins.spines.values():
118 spine.set_color(color)
119 spine.set_linewidth(lwa)
120

121

122 if do_labels:
123 # ax.set_title(labels[i],c=c,fontsize=fontsize,fontweight="bold",pad=5)
124 ax.set_title(titles[i],c=c,fontsize=fontsize,pad=5)
125

126 else:
127 ax.annotate(string.ascii_lowercase[i], xy=(-0.25, 1), xycoords='axes fraction',
128 xytext=(0, 0), textcoords='offset points', va='top', c=axcol,
129 fontsize=fontsize)
130

131

132

133 # plt.subplots_adjust(wspace=0,hspace=0)
134

135 # Display the plot
136 plt.show()
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Because the label for this cell is the same integer on either side of a self-contact interface, we cannot localize the
boundary of the cell at these interfaces. However, affinity segmentation encodes not only the information necessary to
recontruct cell boundaries but also to traverse cell boundarues as a parametric contour.

1 import omnipose, cellpose_omni
2 from scipy import signal
3 t = -1 # last frame
4 im = phase[t]
5 msk = masks[t]
6

7 f = 1
8 c = [0.5]*3
9 fontsize = 11

10

11 titles = [#r'$\bf{image}$'+'\n(phase contrast)',
12 r'$\bf{connectivity}$'+'\n(affinity graph)',
13 r'$\bf{boundary}$'+'\n(from affinity graph)',
14 r'$\bf{contour}$'+'\n(traced with affinity)']
15

16 # extract the addinity graph and coordinate array
17 aa = afnty[t]
18 shape = msk.shape
19 dim = msk.ndim
20 neighbors = aa[:dim]
21 affinity_graph = aa[dim]#.astype(bool) #VERY important to cast to bool, now done␣

→˓internally
22 idx = affinity_graph.shape[0]//2
23 coords = tuple(neighbors[:,idx])
24

25 # make the boundary
26 ol = omnipose.core.affinity_to_boundary(msk,affinity_graph,coords)
27

28 # make the contour
29 contour_map, contour_list, unique_L = omnipose.core.get_contour(msk,affinity_graph,

→˓coords,cardinal_only=1)
(continues on next page)
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30

31 cmap='inferno'
32 color = [0.5]*3
33

34

35

36 # contour_colored = np.stack([(contour_map>1).astype(np.float32)]*4,axis=-1)
37 contour_colored = np.zeros(contour_map.shape+(4,))
38

39 for contour in contour_list:
40 # coords_t = np.unravel_index(contour,contour_map.shape)
41 coords_t = np.stack([c[contour] for c in coords])
42 cyclic_diff = np.diff(np.append(coords_t, coords_t[:, 0:1], axis=1), axis=1)
43

44 a = cyclic_diff
45 window_size = 11
46 window = np.ones(window_size) / window_size
47 cyclic_diff = signal.convolve2d(np.concatenate((a[:, -window_size+1:], a, a[:,␣

→˓:window_size-1]), axis=1), np.expand_dims(window, axis=0), mode='same')[:, window_size-
→˓1:-window_size+1]

48

49 angles = np.arctan2(cyclic_diff[1], cyclic_diff[0])+np.pi
50

51

52 a = 2
53 r = ((np.cos(angles)+1)/a)
54 g = ((np.cos(angles+2*np.pi/3)+1)/a)
55 b =((np.cos(angles+4*np.pi/3)+1)/a)
56

57 rgb = np.stack((r,g,b,np.ones_like(angles)),axis=-1)
58

59 # v = np.array(range(len(contour)))/len(contour)
60 # contour_colored[tuple(coords_t)] = ctr_cmap(v)
61 contour_colored[tuple(coords_t)] = rgb
62

63

64 images = [#im,
65 None,
66 omnipose.plot.apply_ncolor(ol,offset=.5),
67 contour_colored]
68

69 # N = len(images)
70 # A = N//2
71 # B = N-A
72

73 # fig, axes = plt.subplots(2,B, figsize=(szX*A,szY*B))
74 # fig.patch.set_facecolor([0]*4)
75

76 # inset axis
77

78

79 # Set up the figure and subplots

(continues on next page)
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80 N = len(images)
81 h,w = im.shape
82

83

84 extent = np.array([0,w,0,h])#-0.5
85 sy,sx,wy,wx = [h//2.5,w//3.6,40,40]
86 zoomslc = tuple([slice(sy,sy+wy),slice(sx,sx+wx)])
87 zoom = 5
88 bbox_to_anchor = (-(wx/w)*zoom/(1.25),-zoom/1.5*wy/h)
89 asp = h/w
90

91 sf = h
92 p = 0.5 # needs to be defined as fraction of width for aspect ratio to work?
93 h /= sf
94 w /= sf
95

96 oy,ox = np.abs(bbox_to_anchor)/2
97 # oy,ox = 0.,0.
98 # Calculate positions of subplots
99 left = np.array([ox+i*(w+p) for i in range(N)])*1.

100 bottom = np.array([oy]*N)*1.
101 width = np.array([w]*N)*1.
102 height = np.array([h]*N)*1.
103

104 max_w = left[-1]+width[-1]+ox
105 max_h = bottom[-1]+height[-1]+oy
106

107 sw = max_w
108 sh = max_h
109

110 sf = max(sw,sh)
111 left /= sw
112 bottom /= sh
113 width /= sw
114 height /= sh
115

116 # Create figure
117 s = 6.5
118 fig = plt.figure(figsize=(s,s*sh/sw), frameon=False, dpi=600)
119

120 # Add subplots
121 axes = []
122 for i in range(N):
123 ax = fig.add_axes([left[i], bottom[i], width[i], height[i]])
124 axes.append(ax)
125

126

127

128 h,w = im.shape
129

130

131 lwa = 2/N # linewidth for axes
(continues on next page)
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132 lw = lwa/20 # linewidth for affinity graph
133 labelpad = 4/3
134

135 fontsize2 = 8
136

137 for i, ax in enumerate(axes):
138

139 # inset axes....
140 # axins = ax.inset_axes([0.5, 0.5, 0.47, 0.47])
141 # axins = inset_axes(ax, 1,1 , loc=2, bbox_to_anchor=(.08, 0.35))
142 axins = zoomed_inset_axes(ax, zoom, loc='lower left',
143 # bbox_to_anchor=(1.1, 1.1),
144 # bbox_to_anchor=(-.15,-.15),
145 bbox_to_anchor=bbox_to_anchor,
146 bbox_transform=ax.transAxes)
147

148 if i==(N-3):
149 # ax.invert_yaxis()
150 neighbors = utils.get_neighbors(coords,steps,dim,shape)
151

152 # plot the while affinity graph
153 summed_affinity, affinity_cmap = plot_edges(shape,affinity_graph,neighbors,

→˓coords,
154 figsize=1,fig=fig,ax=ax,

→˓extent=extent,
155 edgecol=edgecol,cmap=cmap,

→˓linewidth=lw
156

157 )
158

159 # plot the inset one
160 axins.invert_yaxis()
161 ax.invert_yaxis()
162

163 summed_affinity, affinity_cmap = plot_edges(shape,affinity_graph,neighbors,
→˓coords,

164 figsize=1,fig=fig,ax=axins,
165 extent=extent,
166 edgecol=edgecol,linewidth=lw*zoom,cmap=cmap
167 )
168

169 # axins.set_xlim(zoomslc[1].start, zoomslc[1].stop)
170 axins.set_xlim(zoomslc[1].start, zoomslc[1].stop)
171

172 # axins.set_ylim(zoomslc[0].stop, zoomslc[0].start)
173 # axins.set_ylim(h-zoomslc[0].stop, h-zoomslc[0].start)
174 axins.set_ylim(h-zoomslc[0].start, h-zoomslc[0].stop)
175

176

177 loc1,loc2 = 4,2
178 patch, pp1, pp2 = mark_inset(ax, axins, loc1=loc1, loc2=loc2, fc="none",
179 ec=color+[1],zorder=2,lw=lwa)

(continues on next page)
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180 pp1.loc1 = 4
181 pp1.loc2 = 1
182 pp2.loc1 = 2
183 pp2.loc2 = 3
184

185

186

187

188 # Display the color swatches as an image
189 Nc = affinity_cmap.N
190 colors = affinity_cmap.colors
191

192 wa = .07
193 ha = .05
194 # cax = fig.add_axes([.3975, -.08, wa, ha])
195 cax = inset_axes(ax, width="60%", height="100%", loc='lower right',
196 bbox_to_anchor=(0, -0.725, 1, 1), bbox_transform=ax.transAxes,
197 borderpad=0)
198

199 n = np.arange(3,9)
200 Nc = len(n)
201 cax.imshow(affinity_cmap(n.reshape(1,Nc)))#,vmin=n[0]-1,vmax=n[-1]+1)
202

203 # Set the y ticks and tick labels
204 # cax.set_yticks(np.arange(N))
205 cax.set_xticks(np.arange(Nc))
206

207 nums = [str(i) for i in n]
208 cax.set_xticklabels(nums,c=c,fontsize=fontsize2)
209 cax.tick_params(axis='both', which='both', length=0, pad=labelpad)
210 cax.set_yticks([])
211

212 wa = .07
213 ha = .05
214 cax.set_aspect(ha/wa)
215 cax.set_title('Connections',c=c,fontsize=fontsize2, pad=labelpad)
216 for spine in cax.spines.values():
217 spine.set_color(None)
218

219 # cax.xaxis.set_labelpad = -10
220 else:
221

222

223

224 ax.imshow(images[i],cmap='gray',extent=extent)
225 # axins.imshow(images[i][zoomslc],extent=extent,origin='upper')
226 axins.imshow(images[i],extent=extent,cmap='gray')
227 # axins.imshow(images[i])#,extent=extent)
228 axins.set_xlim(zoomslc[1].start, zoomslc[1].stop)
229 axins.set_ylim(zoomslc[0].start, zoomslc[0].stop)
230

231 mark_inset(ax, axins, loc1=2, loc2=4, fc="none",
(continues on next page)
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232 ec=color+[1], zorder=2, lw=lwa)
233

234

235

236 if i==(N-1):
237 # ax2 = fig.add_axes([.7, -.15, .25, .25])
238 ax2 = inset_axes(ax, width="60%", height="100%", loc='lower right',
239 bbox_to_anchor=(0, -0.675, 1, 1), bbox_transform=ax.transAxes,
240 borderpad=0)
241 lw2 = 1
242

243 # Create the circle and arrows on the second subplot
244 circle = plt.Circle((0, 0), 1, fill=False, edgecolor=c,lw=lw2)
245 ax2.add_artist(circle)
246

247 # Set the number of arrows and colormap
248 n_arrows = 11
249 cmap = plt.get_cmap('hsv')
250

251 for j in range(n_arrows):
252 angle = j * 2 * np.pi / n_arrows
253 a = 2
254 r = ((np.cos(angle)+1)/a)
255 g = ((np.cos(angle+2*np.pi/3)+1)/a)
256 b =((np.cos(angle+4*np.pi/3)+1)/a)
257

258 rgb = np.stack((r,g,b,np.ones_like(angle)),axis=-1)
259

260

261 x, y = np.cos(angle), np.sin(angle)
262 # dx, dy = -y, x
263 dx, dy = y,-x
264

265 # clr = cmap(j / n_arrows)
266 ax2.quiver(x, y, dx, dy, color=rgb, angles='xy', scale_units='xy', scale=2,␣

→˓width=.05)
267

268 # Add text to the center of the circle
269 ax2.text(0, 0, 'Angle', ha='center', va='center',c=c,fontsize=fontsize2)
270

271 # Set the axis limits and aspect ratio
272 ax2.set_xlim(-1.5, 1.5)
273 ax2.set_ylim(-1.5, 1.5)
274 ax2.set_aspect('equal')
275

276 # Remove the axes from the second subplot
277 ax2.axis('off')
278

279

280 if do_labels:
281 # ax.set_title(labels[i],c=c,fontsize=fontsize,fontweight="bold",pad=5)
282 ax.set_title(titles[i],c=c,fontsize=fontsize,pad=5)

(continues on next page)
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283

284 else:
285 ax.annotate(string.ascii_lowercase[i], xy=(-0.25, 1), xycoords='axes fraction',
286 xytext=(0, 0), textcoords='offset points', va='top', c=axcol,
287 fontsize=fontsize)
288

289

290

291 ax.axis('off')
292 # axins.axis('off')
293 axins.set_xticks([])
294 axins.set_yticks([])
295 axins.set_facecolor([0]*4)
296

297

298 for spine in axins.spines.values():
299 spine.set_color(color)
300 spine.set_linewidth(lwa)
301

302

303 # plt.subplots_adjust(wspace=-0,hspace=0)
304 plt.subplots_adjust(wspace=-.35,hspace=.5)
305

306

307 # Display the plot
308 plt.show()

Pixels (or in ND, hypervoxels) may be classified as interior or boundary by their net connectivity. An ND hypervoxel
connected to all 3𝑁 − 1 neighbors is classified as internal (8 in 2D, fully 2-connected to both cardinal and ordinal
neighbors). Hypervoxels with fewer than 3𝑁 − 1 connections are classified as boundary. In Omnipose, hypervoxels
with fewer than 𝑁 connections are pruned when using affinity segmentation to avoid spurs and allow cell contours in
2D to be traced.

Because connections in an affinity graph are symmetrical, interfaces between objects are 2 hypervoxels thick. That
is, the shortest path between the interiors of any two objects will pass through at least two boundary hypervoxels, one
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belonging to each object. Thresholding-based methods of boundary detection do not guarantee this symmetry and thus
predict too many or too few boundary hypervoxels.
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CHAPTER

SEVENTEEN

N-COLOR

Here I will argue that many of the errors I see in ground-truth datasets can be most kindly attributed to a lack of good
label visualization. To illustrate, I will use the following cell microcolony.

17.1 The insufficiency of cell outlines

1 import matplotlib.pyplot as plt
2 plt.style.use('dark_background')
3 import matplotlib as mpl
4 %matplotlib inline
5 mpl.rcParams['figure.dpi'] = 600
6 import numpy as np
7 import omnipose
8 from omnipose.utils import rescale, crop_bbox
9 from omnipose.plot import imshow

10 import fastremap
11

12 from pathlib import Path
13 import os
14 from cellpose_omni import io, plot
15 omnidir = Path(omnipose.__file__).parent.parent
16 basedir = os.path.join(omnidir,'docs','test_files') #first run the mono_channel_bact␣

→˓notebook to generate masks
17 masks = io.imread(os.path.join(basedir,'masks','ec_5I_t141xy5c1_cp_masks.tif'))
18 img = io.imread(os.path.join(basedir,'ec_5I_t141xy5c1.tif'))
19 imshow(plot.outline_view(img,masks),3,interpolation='None')

155



omnipose, Release 1.0.6-26-g260e4d3

This outline view clearly distinguishes cells from each other, and it requires just one color (one channel). As ground
truth, binary maps like this are one of the easiest annotations to generate and are therefore quite common in public
datasets (see MiSiC, DeLTA, and SuperSegger just for a few in the realm of bacterial microscopy).

Despite the ease of drawing reasonable cell outlines, it is exceptionally difficult to guarantee that these monochromatic
boundaries between cells are precisely 2 pixels thick. Without this property, the resulting label matrix will either
exclude boundary pixels or asymmetrically incorporate them into one of the two cells. This is a primary reason why
label matrices, not boundary maps, should be used to train and evaluate any segmentation algorithm (labels can fail in
self-contact scenarios, but Omnipose now accepts affinity graphs or linked label matrices just for those cases).

17.2 Not enough colors to go around

However, creating and editing label matrices has its own set of issues. If you have too many cells in an image, you
quickly run out of distinct colors to distinguish adjacent cells:

1 bbx = crop_bbox(masks) #in omni
2 slc = bbx[0]
3 m,_ = fastremap.renumber(masks[slc]) # make sure masks go from 0 to N
4 print('number of masks: ', np.max(m))
5

6 cmap = mpl.colormaps.get_cmap('viridis')
7 pic1 = cmap(rescale(m))
8 pic1[:,:,-1] = m>0 # alpha
9 imshow(pic1,3,interpolation='None')

number of masks: 161
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This perceptually uniform color map is our best bet of distinguishing cells from each other, but some close cells are
too similar to tell apart. The standard technique is to randomly shuffle the labels:

1 import fastremap
2 keys = fastremap.unique(m)
3 vals = keys.copy()
4 np.random.seed(42)
5 np.random.shuffle(keys)
6 d = dict(zip(keys,vals))
7 m_shuffle = fastremap.remap(m,d)
8 pic2 = cmap(rescale(m_shuffle))
9 pic2[:,:,-1] = m>0 # alpha

10 imshow(pic2,3,interpolation='None')

This doesn't fix the problem. You might think that adding more colors would help...

1 from omnipose.utils import sinebow
2 from matplotlib.colors import ListedColormap
3

4 cmap = ListedColormap([color for color in list(sinebow(m.max()).values())[1:]])
5 pic3 = cmap(m_shuffle)
6 pic3[:,:,-1] = m>0 # alpha

(continues on next page)
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7 imshow(pic3,3,interpolation='None')

... but since even random shuffling does not guarantee that numerically close labels become spatially separated, adjacent
labels that were hard to tell apart using a perceptually uniform color map like viridis are often more difficult to tell apart
using any kind of unicorn-vomit color map.

Worse still, multiple similar colors can accidentally get used while editing the wrong cell (e.g., color 11 inside cell 12
that are both shades of yellow) and ruin the segmentation despite this error being imperceptible to the human eye (this
may account for many of the "errant pixels" we observe across ground-truth datasets of dense cells).

17.3 4-color in theory, N-color in practice

To solve this problem, I developed the ncolor package, which converts 𝐾-integer label matrices to 𝑁 ≪ 𝐾 - color
labels. The four color theorem guarantees that you only need 4 unique cell labels to cover all cells, but my algorithm
opts to use 5 if a solution using 4 is not found quickly. This was integral in developing the BPCIS dataset, and I
subsequently incorporated it into Cellpose and Omnipose. By default, the GUI and plot commands display N-color
masks for easier visualization and editing:

1 import ncolor
2 cmap = mpl.colormaps.get_cmap('viridis')
3 pic4 = cmap(rescale(ncolor.label(m)))
4 pic4[:,:,-1] = m>0 # alpha
5 imshow(pic4,3,interpolation='None')
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Interesting note: my code works for 3D volume labels as well, but there is no analogous theorem guaranteeing any
sort of upper bound 𝑁 < 𝐾 in 3D. In 3D, you could in principle have cells that touch every other cell, in which case
𝑁 = 𝐾 and you cannot "recolor your map". On the dense but otherwise well-behaved volumes I have tested, my
algorithm ends up needing 6-7 unique labels. I am curious if some bound on N can be formulated in the context of
constrained volumes, e.g., packed spheres of mixed and arbitrary diameter...

Getting uniform colors for non-contacting or sparse objects

Final note: thanks to Ryan Peters for suggesting a fix for displaying segmentations that (a) are from ground-truth sets
with pixel-separated (boundary-map-generated) label matrices or (b) have many sparse, disjoint objects. By expanding
labels before coloring them (a step that actually takes far longer than the coloring step itself), we get a much more
pleasing distribution of colors that can make it easier to assess segmentations when when images are zoomed out. For
example,

1 from omnipose import plot
2 masks = io.imread(os.path.join(basedir,'masks','caulo_15_cp_masks.tif'))
3 exp = ncolor.expand_labels(masks)
4 ims = [plot.apply_ncolor(masks,expand=False),
5 plot.apply_ncolor(exp),
6 plot.apply_ncolor(masks)]
7

8 titles = ['Original masks','Intermediate expansion', 'Masked result']
9 N = len(titles)

10 f = 1.5
11 c = [0.5]*3
12 fontsize=10
13 dpi = mpl.rcParams['figure.dpi']
14 Y,X = masks.shape[-2:]
15 szX = max(X//dpi,2)*f
16 szY = max(Y//dpi,2)*f
17

18 fig, axes = plt.subplots(1,N, figsize=(szX*N,szY))
19 fig.patch.set_facecolor([0]*4)
20 for i,ax in enumerate(axes):
21 ax.imshow(ims[i])
22 ax.axis('off')
23 ax.set_title(titles[i],c=c,fontsize=fontsize,fontweight="bold")
24

25 plt.subplots_adjust(wspace=0.1)
(continues on next page)
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26 plt.show()

Left: ncolor applied to raw masks. Middle: ncolor expanded masks. Right: resulting ncolor masks with more uniform
color distribution.

Note that the expansion step takes about 2x longer than the ncolor algorithm itself takes to run, but the extra milliseconds
are worth it. If you know of any faster way to get a feature transform than scipy.ndimage, please let me know.

1 import string
2 fontsize = 11
3

4 axcol = [0.5]*3
5 # Set up the figure and subplots
6 images = [pic1,pic2,pic4]
7 N = len(images)
8 M = 1
9

10 h,w = images[0].shape[:2]
11

12 sf = w
13 p = 0.05 # needs to be defined as fraction of width for aspect ratio to work?
14 h /= sf
15 w /= sf
16 offset = 0.05
17 # Calculate positions of subplots
18 left = np.array([i*(w+p) for i in range(N)])*1.+offset
19 bottom = np.array([0]*N)*1.
20 width = np.array([w]*N)*1.
21 height = np.array([h]*N)*1.
22

23 max_w = left[-1]+width[-1]
24 max_h = bottom[-1]+height[-1]
25

26 sw = max_w
27 sh = max_h
28

29 sf = max(sw,sh)
30 left /= sw
31 bottom /= sh

(continues on next page)
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32 width /= sw
33 height /= sh
34

35 # Create figure
36 s = 6
37 fig = plt.figure(figsize=(s,s*sh/sw), frameon=False, dpi=600)
38 # fig = plt.figure(figsize=(s,s*sh/sw), frameon=False, dpi=300,constrained_layout=True)
39 # fig.set_constrained_layout_pads(w_pad=-0.25, h_pad=0., hspace=0., wspace=0.25)
40 # fig.patch.set_facecolor([0]*4)
41

42 # Add subplots
43 axes = []
44 for i in range(N):
45 ax = fig.add_axes([left[i], bottom[i], width[i], height[i]])
46 ax.imshow(images[i])
47 axes.append(ax)
48

49 ax.annotate(string.ascii_lowercase[i], xy=(-offset, 1), xycoords='axes fraction',
50 xytext=(0, 0), textcoords='offset points', va='top', c=axcol,
51 fontsize=fontsize)
52

53 ax.axis('off')
54

55 datadir = omnidir.parent
56 file = os.path.join(datadir,'Dissertation','figures','ncolor.pdf')
57 if os.path.isfile(file): os.remove(file)
58 fig.savefig(file,transparent=True,pad_inches=0)#,bbox_inches='tight')
59

60 m.max(),ncolor.label(m).max()
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EIGHTEEN

CELL DIAMETER

The idea of an average cell diameter sounds intuitive, but the standard implementation of this idea fails to capture that
intuition. The go-to method (adopted in Cellpose) is to calculate the cell diameter as the diameter of the circle of
equivalent area. As I will demonstrate, this fails for anisotropic (non-circular) cells. As an alternative, I devised the
following simple diameter metric:

diameter = 2*(dimension+1)*np.mean(distance_field)

Because the distance field represents the distance to the closest boundary point, it naturally captures the intrinsic 'thick-
ness' of a region (in any dimension). Averaging the field over the region (the first moment of the distribution) distills
this information into a number that is intuitively proportional to the thickness of the region. For example, if a region
is made up of a bungle of many thin fragments, its mean distance is far smaller than the mean distance of the circle
of equivalent area. But to call it a 'diameter', I wanted this metric to match the diameter of a sphere in any dimension.
So, by calculating the average of distance field of an n-sphere, we get the above expression for the the diameter of an
n-sphere given the average of the distance field over the volume.

18.1 Example cells

Filamenting bacterial cells often exhibit constant width but increasing length. This dataset comes from the deletion of
the essential gene ftsN in Acinetobacter baylyi.

1 from pathlib import Path
2 from cellpose_omni import utils, plot, models, io, dynamics
3 import os, sys, io
4 import numpy as np
5 import matplotlib.pyplot as plt
6 plt.style.use('dark_background')
7 import matplotlib as mpl
8 %matplotlib inline
9 mpl.rcParams['figure.dpi'] = 600

10

11 # Save a reference to the original stdout stream
12 old_stdout = sys.stdout
13

14 # Redirect stdout to a StringIO object
15 sys.stdout = io.StringIO()
16

17

18 import omnipose
19 from omnipose.plot import imshow

(continues on next page)
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20 import tifffile
21 omnidir = Path(omnipose.__file__).parent.parent
22 basedir = os.path.join(omnidir,'docs','_static')
23 nm = 'ftsZ'
24 masks = tifffile.imread(os.path.join(basedir,nm+'_masks.tif'))
25 mnc = omnipose.plot.apply_ncolor(masks)
26

27 f = 1
28 c = [0.5]*3
29 fontsize=10
30 dpi = mpl.rcParams['figure.dpi']
31 Y,X = masks.shape[-2:]
32 szX = max(X//dpi,2)*f
33 szY = max(Y//dpi,2)*f
34

35 # T = [50,80,100,150,180,240]
36 T = range(0,len(masks),45)
37 titles = ['Frame {}'.format(t) for t in T]
38 ims = [mnc[t] for t in T]
39 N = len(titles)
40

41 fig, axes = plt.subplots(1,N, figsize=(szX*N,szY))
42 fig.patch.set_facecolor([0]*4)
43

44 for i,ax in enumerate(axes):
45 ax.imshow(ims[i])
46 ax.axis('off')
47 ax.set_title(titles[i],c=c,fontsize=fontsize,fontweight="bold")
48

49 plt.subplots_adjust(wspace=0.1)
50 plt.show()
51

52 # Restore the original stdout stream
53 sys.stdout = old_stdout
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18.2 Compare diameter metrics

By plotting the mean diameter (averaged over all cells after being computed per-cell, of course), we find that the 'circle
diameter metric' used in Cellpose rises drastically with cell length, but the 'distance diameter metric' of Omnipose
remains nearly constant. If we tried to use the former to train a SizeModel(), images would get downsampled heavily
to the point of cells being too thin to segment, and that is assuming that the model can reliably detect the highly
nonlocal property of cell length in an image instead of the local property of cell width (at least, what we humans would
point to and call cell width).

1 import fastremap
2 n = len(masks)
3 diam_old = []
4 diam_new = []
5 cell_num = []
6 x = range(n)
7 for k in x:
8 m = masks[k]
9 fastremap.renumber(m,in_place=True)

10 cell_num.append(m.max())
11 diam_old.append(utils.diameters(m,omni=False)[0])
12 diam_new.append(utils.diameters(m,omni=True)[0])
13

14

15 from omnipose.utils import sinebow
16 golden = (1 + 5 ** 0.5) / 2
17 sz = 4
18 labelsize = 5
19

20 %matplotlib inline
21

22 plt.style.use('dark_background')
23 mpl.rcParams['figure.dpi'] = 300
24

25 axcol = [0.5]*3+[1]
26 N = 3
27 colors = sinebow(N,offset=0)
28 background_color = [0]*4
29

30 fig = plt.figure(figsize=(sz, sz/golden),frameon=False)
31 fig.patch.set_facecolor(None)
32

33 ax = plt.axes()
34

35 ax.plot(range(n),diam_old,c=colors[1],label='Cellpose')
36 ax.plot(range(n),diam_new,c=colors[N],label='Omnipose')
37

38 ax.legend(loc='best', frameon=False,labelcolor=axcol, fontsize = labelsize)
39 ax.tick_params(axis='both', which='major', labelsize=labelsize,length=3, direction="out",

→˓colors=axcol,bottom=True,left=True)
40 ax.tick_params(axis='both', which='minor', labelsize=labelsize,length=3, direction="out",

→˓colors=axcol,bottom=True,left=True)
41 ax.set_ylabel('Diameter metric', fontsize = labelsize,c=axcol)
42 ax.set_xlabel('Frame number', fontsize = labelsize, c=axcol)

(continues on next page)
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43 ax.set_facecolor(background_color)
44

45 for spine in ax.spines.values():
46 spine.set_color(axcol)
47

48 ax.spines['top'].set_visible(False)
49 ax.spines['right'].set_visible(False)
50

51 plt.show()

166 Chapter 18. Cell diameter



CHAPTER

NINETEEN

GAMMA

One of the more trivial uses of good binary segmentation (let alone best-in-class instance segmentation) is the ability
to adjust an image based on foreground/background values.

19.1 Example Image

To start off, consider this example image:

1 import matplotlib as mpl
2 import matplotlib.pyplot as plt
3 plt.style.use('dark_background')
4 dpi = 600
5 mpl.rcParams['figure.dpi'] = dpi
6 px = 1/plt.rcParams['figure.dpi'] # pixel in inches
7 import matplotlib_inline
8 matplotlib_inline.backend_inline.set_matplotlib_formats('png')
9

10 %matplotlib inline
11

12 import numpy as np
13 import omnipose
14 from omnipose.plot import imshow
15 from pathlib import Path
16 import os
17 from cellpose_omni import io, plot
18 omnidir = Path(omnipose.__file__).parent.parent
19 basedir = os.path.join(omnidir,'docs','test_files')
20 im = io.imread(os.path.join(basedir,'e1t1_crop.tif'))
21

22 imshow(im,1,cmap='gray')

2024-03-04 13:10:51,353 [INFO ] [io.py 61 logger_setup ␣
→˓] WRITING LOG OUTPUT TO /home/kcutler/.cellpose/run.log
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This image is 16-bit and already adjusted to span the entire bit depth:

1 print(im.dtype, im.ptp()==(2**16-1))

uint16 True

19.2 Exposure and outliers

Raw data is often under- or over-exposed and can contain outliers where pixels are saturated. We can simulate this by
dividing the image by 2 and adding a bright pixel:

1 im_bad = im * .5 # reduce brightness by 50%
2

3 f = 1
4 c = [0.5]*3
5 fontsize=10
6

7 # Number of subplots in the right column
8 n = 2
9 h, w = im_bad.shape[:2]

10

11 sf = w
12 p = 0.0001*w # needs to be defined as fraction of width for aspect ratio to work?
13 h /= sf
14 w /= sf
15

16 # Calculate positions of subplots
17 left = np.array([i*(w+p) for i in range(n)])*1.
18 bottom = np.array([0]*n)*1.
19 width = np.array([w]*n)*1.
20 height = np.array([h]*n)*1.
21

(continues on next page)
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22 max_w = left[-1]+width[-1]
23 max_h = bottom[-1]+height[-1]
24

25 sf = max_w - (n-1)*p
26 left /= sf
27 bottom /= sf
28 width /= sf
29 height /= sf
30

31

32 s = 6.5 * 2/4 # make it so that these appear the same size
33 fig = plt.figure(figsize=(s,s), frameon=False, dpi=300)
34

35 ax = fig.add_axes([left[0], bottom[0], width[0], height[0]])
36 ax.imshow(im_bad,cmap='gray')
37 ax.axis('off')
38 ax.set_title(r'$\bf{Underexposed}$' + '\n(min/max rescaling)',c=c,fontsize=fontsize)
39

40 y,x = im.shape[0]//3,im.shape[1]//5
41 im_bad[y,x] = im_bad.max()*2 # add a bright pixel
42 im_bad = omnipose.utils.rescale(im_bad)
43

44 ax = fig.add_axes([left[1], bottom[1], width[1], height[1]])
45 ax.imshow(im_bad,cmap='gray')
46 ax.axis('off')
47 ax.set_title(r'$\bf{Underexposed+outlier}$' + '\n(min/max rescaling)',c=c,

→˓fontsize=fontsize)
48

49 scale = 50
50 arrow_length = 0.1*scale
51 dx=dy=-5
52 offx=offy=-5
53 ax.arrow(x - dx*arrow_length-offx, y - dy*arrow_length-offy, dx*arrow_length, dy*arrow_

→˓length,
54 width=0.01*scale, head_width=0.1*scale, head_length=0.1*scale,
55 fc=None, ec=[1.,0,0,0.75],
56 clip_on=False,
57 length_includes_head=True)
58

59 fig.subplots_adjust(wspace=0.1)
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The plt.imshow command simply maps the minimum value of the image to 0 and the maximum value of the image
to 1, i.e. it applies standard 0-1 min-max normalization. This explains the dark appearance once we add in a bright
pixel, as most of the image gets mapped to the bottom half of the available color map.

This is annoying when visualizing images next to each other, but it is particularly problematic when we need to stan-
dardize the images we feed into a neural network. We can choose to make all images 0-1, 0-255, etc. (and these can go
above or below the minimum and maximum by a little), but it is much harder for a network to learn foreground from
background if the images are chaotically rescaled like the above example (chaotic meaning that the image darkening is
highly sensitive to the particular condition of whether or not there are saturated pixels).

We solve this by normalizing the image not by the absolute min and max, but by percentiles. We set pixels at or below
the 0.01 percentile to 0 and those at or above the 99.99th percentile to 1. (Cellpose uses 1 and 99, but this will mess up
images with very few cells compared to background).

1 from omnipose.utils import normalize99
2

3 im_fixed = normalize99(im_bad)
4 # print('normalize99() fixes the image:')
5 # imshow(np.hstack((im_bad,im_fixed)),2,cmap='gray')
6

7 f = 1
8 c = [0.5]*3
9 fontsize=10

10

11 titles = ['Min-max rescaling','Percentile rescaling','Original']
12 ims = [im_bad,im_fixed,im]
13

14 # Number of subplots in the right column
15 n = len(ims)
16 h, w = ims[0].shape[:2]
17

(continues on next page)
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18 sf = w
19 p = 0.0001*w # needs to be defined as fraction of width for aspect ratio to work?
20 h /= sf
21 w /= sf
22

23 # Calculate positions of subplots
24 left = np.array([i*(w+p) for i in range(n)])*1.
25 bottom = np.array([0]*n)*1.
26 width = np.array([w]*n)*1.
27 height = np.array([h]*n)*1.
28

29 max_w = left[-1]+width[-1]
30 max_h = bottom[-1]+height[-1]
31

32 sf = max_w - (n-1)*p
33 left /= sf
34 bottom /= sf
35 width /= sf
36 height /= sf
37

38

39 s = 6.5 * 3/4 # make it so that these appear the same size
40 fig = plt.figure(figsize=(s,s), frameon=False, dpi=300)
41

42

43 for i in range(n):
44 ax = fig.add_axes([left[i], bottom[i], width[i], height[i]])
45 ax.imshow(ims[i],cmap='gray')
46 ax.axis('off')
47 ax.set_title(titles[i],c=c,fontsize=fontsize,fontweight="bold")

With an image that has been properly normalized from 0 to 1, we can further adjust it. Right now we cannot see a lot of
detail in the dark parts of the image; what we can do is raise the image to some power, called gammma adjustment.
Because 0𝑥 = 0 and 1𝑥 = 1, we can make the image globally brighter or darker without affecting the total range:

1 # %matplotlib inline
2 from omnipose.utils import sinebow

(continues on next page)
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3

4 im_gamma = []
5 gamma = [0.25, 0.5, 1, 2]
6 N = len(gamma)
7

8 dpi = 300
9 mpl.rcParams['figure.dpi'] = dpi

10 mpl.rcParams["axes.facecolor"] = [0,0,0,0]
11 px = 1/plt.rcParams['figure.dpi'] # pixel in inches
12 axcol = [0.5]*3
13 matplotlib_inline.backend_inline.set_matplotlib_formats('svg')
14

15 w=6
16 labelsize = 10
17 # fig1,ax = plt.subplots(figsize=(w,w/N),facecolor='#0000',frameon=False,)
18 fig1 = plt.figure(figsize=(w,w/N),
19 # frameon=False,
20 facecolor='#0000',
21 # tight_layout={'pad':10}
22 )
23 offset = 0.05
24 ax = fig1.add_axes([offset,0,1-offset,1])
25 fig1.subplots_adjust(left=offset, bottom=0, right=1, top=1, wspace=0, hspace=0)
26

27 color = sinebow(N+1)
28 for j,g in enumerate(gamma):
29 i = im_fixed**g
30 im_gamma.append(i)
31 ax.hist(i.flatten(),
32 bins=100,
33 label='gamma = {}'.format(g),
34 color=color[j+1],
35 histtype='step',
36 density=True)
37

38 l = ax.legend(prop={'size': labelsize},
39 frameon=False,
40 bbox_to_anchor=(1, 1),
41 loc='upper right',
42 borderaxespad=0.)
43 for text,c in zip(l.get_texts(),[color[i] for i in range(1,N+1)]):
44 text.set_color(c)
45

46 for item in l.legend_handles:
47 item.set_visible(False)
48

49 ax.spines['top'].set_visible(False)
50 ax.spines['right'].set_visible(False)
51 ax.patch.set_alpha(0.0)
52 plt.xlabel('Intensity',size=labelsize,c=axcol,fontweight='bold')
53 plt.ylabel('PDF',size=labelsize,c=axcol,fontweight='bold')
54

(continues on next page)
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55 ax.yaxis.set_label_coords(-offset,0.5)
56

57

58 ax.tick_params(axis='both', colors=axcol)
59 ax.spines['bottom'].set_color(axcol)
60 ax.spines['left'].set_color(axcol)
61

62 plt.show()
63

64

65 # %matplotlib inline
66 %config InlineBackend.figure_formats = ['png']
67 # mpl.use('Agg')
68

69 h,w = im.shape[-2:]
70

71 # Number of subplots in the right column
72 n = len(im_gamma)
73

74 sf = w
75 p = 0.05
76 h /= sf
77 w /= sf
78

79 # Calculate positions of subplots
80 left = np.array([i*(w+p) for i in range(n)])*1.
81 bottom = np.array([0]*n)*1.
82 width = np.array([w]*n)*1.
83 height = np.array([h]*n)*1.
84

85 max_w = left[-1]+width[-1]
86 max_h = bottom[-1]+height[-1]
87

88 sw = max_w
89 sh = max_h
90

91 sf = max(sw,sh)
92 left /= sw
93 bottom /= sh
94 width /= sw
95 height /= sh
96

97 # Create figure
98 s = 6
99 fig2 = plt.figure(figsize=(s,s*sh/sw), frameon=False, dpi=600)#,tight_layout={'pad':0})

100 # fig2.patch.set_facecolor([0]*4)
101

102 # Add subplots
103 axes = []
104 for i in range(n):
105 ax = fig2.add_axes([left[i], bottom[i], width[i], height[i]])
106 axes.append(ax)

(continues on next page)
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107

108

109 # fig2, axes = plt.subplots(1,4, figsize=(w,w/4))
110 # fig2.patch.set_facecolor([0]*4)
111

112 sz = im.shape
113 pad = 10
114 width = 30
115 slc = (slice(pad,pad+width),slice(sz[1]-(pad+width),sz[1]-pad),Ellipsis)
116

117 for i,(ax,ig) in enumerate(zip(axes,im_gamma)):
118 ax.axis('off')
119 ig = np.stack([ig]*3+[np.ones_like(ig)],axis=-1)
120 ig[slc] = color[i+1]
121 ax.imshow(ig)
122

123 fig2.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=0, hspace=0)
124 # plt.show()

<Figure size 1800x450 with 1 Axes>

<Figure size 3600x849.766 with 4 Axes>

1 datadir = omnidir.parent
2 # fig1.savefig(os.path.join(datadir,'Dissertation','figures','gammahist.pdf'),
3 # transparent=True,bbox_inches='tight',pad_inches=0)
4

5 file = os.path.join(datadir,'Dissertation','figures','gammahist.pdf')
6 if os.path.isfile(file): os.remove(file)
7 fig1.savefig(file,transparent=True,bbox_inches='tight',pad_inches=0)
8

9 file = os.path.join(datadir,'Dissertation','figures','gammapics.png')
10 if os.path.isfile(file): os.remove(file)
11 fig2.savefig(file,transparent=True,pad_inches=0,bbox_inches='tight')

Note that fractional powers only work (without going into complex numbers) if the image values are nonnegative.

19.3 Semantic gamma normalization

We can next use image segmentation in combination with gamma adjustment to normalize image brightness. This is
very handy for making figures with images coming from different microscopes or optical configurations. To demon-
strate, let's load in the image set from our mono_channel_bact notebook and the corresponding masks we made with
Omnipose.

1 from pathlib import Path
2 import os
3 from cellpose_omni import io, transforms
4

5 mask_filter='_cp_masks'
6 img_names = io.get_image_files(basedir,mask_filter,look_one_level_down=True)

(continues on next page)
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7 mask_names = io.get_label_files(img_names,subfolder='masks')
8 imgs = [io.imread(i) for i in img_names]
9 imgs = [im if im.ndim==2 else im[...,0] for im in imgs]

10 masks = [io.imread(m) for m in mask_names]

Now we will compare standard normalization to what I am calling "semantic gamma normalization". My imple-
mentation of it can be found in omnipose.utils, which simply answers the question: "what is the power to which
I need to raise my image such that the average background becomes equal to a given value?". From left to right,
I plot im/max(im.dtype) (so min>=0 and max=1), 0-1 remapping of im (recsale), percentile remapping of im
(normalize99), gamma normalization to background of 1/3, and gamma normalization of background to 1/2. The
output has been set to use the same colormap and interpolation (vmin and vmax are otherwise set by the min and max
of the image).

1 from omnipose.utils import rescale, normalize_image
2

3 textcolor = [0.5]*3
4

5 f = 1
6 labelsize = 8*f
7 fontsize = 4*f
8 fontsize3 = 12*f
9

10 # Assume the images are stored in a nested list
11 images = []
12 for im, mask in zip(imgs,masks):
13

14 # format the image
15 im = transforms.move_min_dim(im) # move the channel dimension last
16 if len(im.shape)>2:
17 im = im[:,:,1]
18

19 im_raw = im/np.iinfo(im.dtype).max
20

21 im_rescale = rescale(im)
22 im_norm = normalize99(im)
23 im_gamma_3 = normalize_image(im, mask>0, target=1/3)
24 im_gamma_2 = normalize_image(im, mask>0, target=1/2)
25

26 images.append([im_raw,im_rescale,im_norm,im_gamma_3, im_gamma_2])
27

28 images = images[::-1]
29 titles = ['raw','minmax','percentile','$\gamma=1/3$', '$\gamma=1/2$']
30

31 kwargs = {'cmap':'gray','vmin':0,'vmax':1}
32 numt = [str(i) for i in range(len(images))]
33 fig = omnipose.plot.image_grid(images,column_titles=titles,
34 # row_titles=numt,
35 fig_scale=6,
36 outline=True,
37 **kwargs)
38 plt.show()
39

(continues on next page)
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40 # fig = omnipose.plot.image_grid(images[::-1],
41 # column_titles=numt,
42 # row_titles=titles,
43 # fig_scale=4,
44 # outline=True,
45 # order='ji',
46 # **kwargs)
47 # plt.show()

<Figure size 1800x2376.53 with 35 Axes>

The first column provides an essentially 'raw' view of the image, as it has not been shifted or stretched relative to the
original max and min of its data type. As noted in the segmentation notebook, that first image is super dark because it
is an 8-bit image (0-255), but only takes on values from 4 to 22. My code above divides by 255 for uint8 images and
65535 for the last uint16 image.

The second and third columns do stretch the image to fill the whole 0-1 range, but you can see how the images still
have different background intensity. My function in columns 4 and 5 normalize the background to a constant value.
Well-exposed bacterial phase contrast images seem to have a 'natural' background value of about 1/3.
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This is a little cute: Omnipose can "segment" text using the bact_phase_omni model. Semantic segmentation of
uniform, disjoint shapes on a uniform background is absolutely no feat, but it is amusing that a neural network trained
purely on phase contrast images of bacteria gives such reasonable output on something so different from the training
set. Also, the over-segmentation at cusps hints that the network has learned to pick up on local morphology.

To make the Omnipose logo/title/favicon, I first generate some rasterized text images with roughly the same mean
diameter as the bacteria in my training set:

1 # Make some text images
2

3 from PIL import Image, ImageDraw, ImageFont
4 import numpy as np
5 import matplotlib.pyplot as plt
6 plt.style.use('dark_background')
7 import matplotlib as mpl
8 %matplotlib inline
9 mpl.rcParams['figure.dpi'] = 300

10

11 from omnipose.utils import bbox_to_slice
12

13 tsizes = [60]
14 texts = ["Omnipose","O"]
15 imgs = []
16 for textsize in tsizes:
17 fonts = [ImageFont.truetype(f, textsize) for f in ["SFNSRounded.ttf"]]
18 # fonts = [ImageFont.truetype(f, textsize) for f in ["Arial.ttf"]]
19 for text in texts:
20 for font in fonts:
21 size = np.array([textsize*len(text)*2, textsize*2])
22 im = Image.new("RGB", tuple(size), "white")
23 d = ImageDraw.Draw(im)
24 center = size/2
25 anchor = "mm"
26 d.text(center, text, fill="black", anchor=anchor, font=font)
27 bbox = d.textbbox(center, text, anchor=anchor, font=font)
28 bbox = [bbox[1],bbox[0],bbox[3],bbox[2]] # reverse x, y
29 im = np.array(im)
30 shape = im.shape[:2]
31 slc = bbox_to_slice(bbox,shape,pad = 3)
32 im = im[slc]
33 imgs.append(im)

(continues on next page)
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(continued from previous page)

34

35

36 fig = plt.figure(figsize=(1,1))
37 fig.patch.set_facecolor([0]*4)
38

39

40 plt.imshow(im)
41 plt.axis('off')
42 plt.show()

20.1 Segmentation

I will then segment these image with the standard settings:

1 from cellpose_omni import plot, models, core
2 import omnipose
3

4 model_name = 'bact_phase_omni'
5 use_GPU = core.use_gpu()
6 model = models.CellposeModel(gpu=use_GPU, model_type=model_name)
7

8

9 chans = [0,0] #this means segment based on first channel, no second channel
10 nimg = len(imgs)
11 n = range(nimg)
12

13 # define parameters
14 mask_threshold = 1
15 verbose = 0
16 use_gpu = use_GPU
17 transparency = True
18 rescale=None
19 omni = True
20 flow_threshold = 0
21 resample = True
22 cluster = False
23

24 masks, flows, styles = model.eval([imgs[i] for i in n],
25 channels=chans,
26 rescale=rescale,
27 mask_threshold=mask_threshold,

(continues on next page)
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28 transparency=transparency,
29 flow_threshold=flow_threshold,
30 omni=omni,resample=resample,
31 verbose=verbose,
32 cluster=cluster)
33

34

35 mpl.rcParams['figure.dpi'] = 300
36 plt.style.use('dark_background')
37

38 for idx,i in enumerate(n):
39

40 maski = masks[idx] # get masks
41 bdi = flows[idx][-1] # get boundaries
42 flowi = flows[idx][0] # get RGB flows
43

44 # set up the output figure to better match the resolution of the images
45 # f = 10
46 # szX = maski.shape[-1]/mpl.rcParams['figure.dpi']*f
47 # szY = maski.shape[-2]/mpl.rcParams['figure.dpi']*f
48 szX,szY = 10,10
49 fig = plt.figure(figsize=(szY,szX*4))
50 fig.patch.set_facecolor([0]*4)
51

52 plot.show_segmentation(fig, omnipose.utils.normalize99(imgs[i]),
53 maski, flowi, bdi, channels=chans, omni=True,␣

→˓interpolation=None)
54

55 plt.tight_layout()
56 plt.show()

2023-08-03 20:42:12,194 [INFO] ** TORCH GPU version installed and working. **
2023-08-03 20:42:12,194 [INFO] >>bact_phase_omni<< model set to be used
2023-08-03 20:42:12,195 [INFO] ** TORCH GPU version installed and working. **
2023-08-03 20:42:12,195 [INFO] >>>> using GPU

0%| | 0/2 [00:00<?, ?it/s]

20.1. Segmentation 179



omnipose, Release 1.0.6-26-g260e4d3

I landed on this font because it is one of Apple's system defaults (and therefore works well with the system fonts used
on our website when viewed on Apple devices), and I chose this scale because it is very close to bacteria and showed
a good amount of 'segmentation' in the M, N, P, and E from purely local morphology (cusps). This gives reasonable
output at higher-resolution text (wider 'cells'), but it starts to hallucinate output between objects if the size gets too
large.

20.2 Adjusting transparency

The transparency (alpha channel) is set by the flow magnitude, and the color (RGB channels) is set by the flow angle
according to a shifted sinebow relation:

angles = np.arctan2(dP[1], dP[0])+np.pi
r = ((np.cos(angles)+1)/2)
g = ((np.cos(angles+2*np.pi/3)+1)/2)
b =((np.cos(angles+4*np.pi/3)+1)/2)

(a is just a constant, not alpha). The slight tinge of green comes from the fact that np.arctan2(0,0)=0 and ((np.
cos(0+2*np.pi/3)+1)/2) = 1/4. I'll try two ways to remove it: first by removing any average background bias,
second by adjusting the alpha channel so that the background alpha is 0 on average.

1 import skimage.io
2 import os
3 from omnipose.utils import normalize99, rescale
4 from scipy.ndimage import zoom
5 from pathlib import Path
6

7 omnidir = Path(omnipose.__file__).parent.parent
8 basedir = os.path.join(omnidir,'docs','_static')
9 names = ['logo.png','icon.ico']

10 ext = '.png'
11

12 for idx,i in enumerate(n):
13

14 maski = masks[idx]
15 flowi = flows[idx][0]
16 dPi = flows[idx][1]
17 bias = [np.mean(d[maski==0]) for d in dPi]
18 angle = np.arctan2(bias[1], bias[0]) / np.pi
19 print('avarage bias is {}, average angle is {} pi rad.'.format(bias,angle))
20 dPi_new = np.stack([np.clip(d - b,-np.inf,np.inf) for d,b in zip(dPi,bias)])

(continues on next page)
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(continued from previous page)

21 flowi_new = plot.dx_to_circ(dPi_new,transparency=True)
22

23 flowi_3 = flowi.copy()
24 alpha = flowi_3[...,-1]
25 flowi_3[...,-1] = rescale(np.clip(alpha-np.mean(alpha[maski==0]),0,np.inf))*255
26

27 f = 30
28 szX = maski.shape[-1]/mpl.rcParams['figure.dpi']*f
29 szY = maski.shape[-2]/mpl.rcParams['figure.dpi']*f
30 fig = plt.figure(figsize=(szY,szX*4))
31 fig.patch.set_facecolor([0]*4)
32

33 plt.imshow(np.hstack([flowi,flowi_new,flowi_3]))
34 plt.axis('off')
35 plt.show()
36 # aplha channel correction is the winner
37 # also rescale the image without interpolation so that, when displayed as favicon␣

→˓etc., it is not as smoothed out - we want to show real output
38 skimage.io.imsave(os.path.join(basedir,names[idx]),zoom(flowi_3,(3,)*(flowi.ndim-

→˓1)+(1,),order=0))
39

avarage bias is [0.06506971, 0.06305661], average angle is 0.24499917011957278 pi rad.

avarage bias is [0.07233106, 0.06707774], average angle is 0.23801084309752654 pi rad.

Turns out that subtracting off the flow component bias introduces some over-correction in places, leading to some
discoloration. So, alpha adjustment it is. It might be hard for you to see it, but I can. This level of pixel-peeping is how
I made my ground-truth data ;-)
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20.3 Exporting

Favicons need to be a particular resolution. For now I am making a multi-scale .ico, but that isn't working properly on
Safari (too pixelated). Seems like multiple separate PNGs is the way to go moving forward.

1 from PIL import Image
2 filename = os.path.join(basedir,names[-1])
3 zimgs = []
4

5 for j,sz in enumerate([(32,32), (128,128), (180,180), (192,192)]):
6 scale = np.array(sz)/np.array(flowi_3.shape[0:2])
7 zimg = zoom(flowi_3,tuple(scale)+(1,),order=(np.max(scale)<1))
8 zimgs.append(zimg)
9 # plt.imshow(zimg)

10 # plt.axis('off')
11 # plt.show()
12 # zimg.shape
13

14 icon = Image.fromarray(zimgs[0], 'RGBA')
15 icon.save(filename,append_images=[Image.fromarray(z, 'RGBA') for z in zimgs[1:]])
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dist_to_diam() (in module omnipose.core), 68
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